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Ⅰ. Introduction

In an increasingly connected world characterized

by the proliferation of internet of things (IoT) devices,

autonomous systems, and immersive multimedia ap-

plications, the demand for high-speed, low-latency

connectivity has never been greater [1]. As existing

wireless networks strain to accommodate the burgeon-

ing data traffic generated by a multitude of devices

and services, the need for a transformative leap in

communication technology becomes apparent. As the

5th generation (5G) networks continue to mature and

proliferate, the spotlight is now shifting towards the

development of the 6th generation (6G), the next fron-

tier in wireless communication. Envisioned as a para-

digm shift beyond 5G, 6G aims to deliver un-

precedented levels of performance, reliability, and in-

telligence, ushering in an era of ubiquitous con-

nectivity and immersive experiences. Key features of

6G networks include terahertz-frequency operation,

ultra-low latency, massive device connectivity, and

seamless integration with emerging technologies such

as artificial intelligence (AI), blockchain, and edge

computing.
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ABSTRACT

In order to provide high-speed, low-latency connectivity, 6G technology emerges as a promising solution,

offering terahertz-frequency operation, ultra-low latency, and seamless integration with cutting-edge technologies

like artificial intelligence, quantum computing and blockchain. In order to extend connectivity to remote

regions, the integration of non-terrestrial networks (NTNs), including satellites and unmanned aerial vehicles

(UAVs), with 6G networks has become imperative. Moreover, the integration of mobile edge computing (MEC)

into 6G terrestrial networks (TNs) and NTNs plays a crucial role in minimizing latency, optimizing backhaul

traffic, and enhancing user experience by bringing computational resources closer to end-users. To this end,

this paper presents various deployment scenarios for MEC servers, including base stations, UAVs, satellites,

and gateways, and explores different user access scenarios for both TNs and NTNs. By providing a

comprehensive overview of 6G TNs and NTNs, and their integration with MEC, this paper addresses existing

research, tackles challenges, and outlines future directions to propel wireless communication and computing

paradigms forward.
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Additionally, the integration of non-terrestrial net-

works (NTN) with 6G, encompassing satellite com-

munication systems and unmanned aerial vehicles

(UAVs), emerges as a viable solution to extend con-

nectivity to remote and underserved regions[2,3]. With

the ability to transcend geographical barriers and de-

liver ubiquitous coverage, NTNs complement terres-

trial infrastructure and play a crucial role in bridging

the digital divide. In particular, satellite communica-

tion has been recognized for its potential to deliver

high-speed internet access globally at a fraction of the

cost associated with traditional infrastructure. The

evolution from geostationary earth orbit (GEO) to low

earth orbit (LEO) satellite networks marks a sig-

nificant advancement, with projects like OneWeb,

Telesat, and Starlink leading the charge toward ach-

ieving lower latency and reduced path loss. Despite

the advantages offered by satellite networks, chal-

lenges such as slower data transmission speeds and

higher latency compared to terrestrial networks per-

sist, posing hurdles for latency-sensitive and computa-

tion-intensive IoT applications.

In this context, mobile edge computing (MEC) has

emerged as a pivotal paradigm, poised to revolutionize

the way network services are delivered and con-

sumed[4]. By leveraging computational resources at the

network edge, MEC promises to enhance la-

tency-sensitive applications, optimize network traffic,

and enable novel use cases spanning various domains,

including healthcare[5-9], transportation and smart cit-

ies[10-14]. The integration of MEC into next-generation

wireless networks, particularly 6G, holds tremendous

potential to unlock new frontiers in connectivity and

enable unprecedented levels of innovation[15].

Against this backdrop, this survey paper aims to

provide a comprehensive overview of the

state-of-the-art in NTNs, MEC, and the integration of

MEC into 6G NTNs. By synthesizing existing re-

Category Ref. Key contributions

NTN

[16]
Propose machine learning techniques for managing NTN connectivity as well as to improve
service performance

[17]
Address challenges such as quality of experience, computation offloading, task scheduling,
mobility management, and fault recovery, focusing mainly on satellite relays

[21]
Discuss 3GPP’s roadmap for NTN standardization, focusing on energy-efficient internet of
remote things environment

MEC

[68] Propose the SDN-based MEC system to reduce energy consumption and latency in Industry 4.0

[70]
Propose the reliability-aware virtual network function instance provisioning in MEC to maximize
network throughput

[73]
Explore optimal resource allocation in information-centric wireless networks using MEC and
D2D communication to alleviate core network congestion

[75]
Propose an algorithm to solve the problem of maximizing average revenue, balancing revenue,
and delay

UAV-aided
network

[81]
Propose a double deep double Q-learning algorithm for air-ground integrated networks,
optimizing computation offloading and relay communication for UAVs, emergence vehicle users,
and ground sensor nodes in emergency scenarios

[84]
Propose a hybrid data aggregation method for large IoT networks using both multi-hop routing
and UAVs

[87]
Propose a MEC-driven UAV inspection scheme for wind turbines in remote areas to improve
costs efficiency

NTN+
MEC

[15]
Propose a process-oriented framework that optimizes communication and MEC in a time-division
manner

[79] Consider the latency and energy optimization in MEC-enhanced Satellite-IoT networks

[80]
Propose the satellite mobile edge computing to improve QoS in high-speed satellite-terrestrial
networks

Table 1. Summary of state-of-the-art contributions related to NTNs and MEC.
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search efforts, identifying key challenges, and out-

lining future directions, this paper seeks to offer val-

uable insights into the ongoing evolution of wireless

communication and computing paradigms, laying the

foundation for future research endeavors and techno-

logical advancements in the field. Table 1 presents

the summary of state-of-the-art contributions related

to NTNs and MEC.

The structure of the paper is outlined as follows:

Section II provides an introduction to NTN, discussing

its significance, challenges, and current research

developments. In Section III, the concept of MEC is

introduced, elucidating its necessity, diverse applica-

tions, and the underlying enabling technologies.

Section IV considers various scenarios illustrating the

integration of MEC with 6G NTNs. Finally, conclud-

ing remarks are presented in Section V, summarizing

the key findings and highlighting potential future

directions.

Ⅱ. 6G Non-Terrestrial Networks

6G technologies are poised to revolutionize the

wireless ecosystem by enabling services through both

terrestrial and non-terrestrial means. NTNs emerge as

a pivotal innovation, designed to deliver connectivity

across the globe, including in regions where tradi-

tional terrestrial networks (TNs) cannot reach. Fig. 1

illustrates the concept of 6G NTNs that combine

ground, air, and space components, embodying an in-

tegrated ground-air-space network structure. This con-

cept aims to combine various communication plat-

forms and technologies to provide extensive coverage,

high data transmission speeds, minimize latency, and

enhance network reliability. Next, we will divide the

explanation of NTNs into two parts, with the first part

focusing on the characteristics of 6G NTNs and the

second part discussing 6G NTN requirements and cur-

rent development status.

2.1 Characteristics and Challenges
Driven by shared radio technology, the integration

of NTNs and TNs is expected to form a cohesive and

widespread wireless system with the following advan-

tages[16-18]:

▪ Global coverage: It can provide stable commu-

nication services in all areas (rural areas with

underdeveloped communication networks,

mountainous areas, and oceans).

▪ High reliability and Low Latency: The net-

work enhances reliability and minimizes latency

by diversifying network choices at different

levels.

▪ Flexibility and scalability: It provides a flexible

and scalable network structure that can be adapt-

ed to various communication needs and environ-

ments by changing the choice of networks;

moreover, it can change offloading decisions to

control resource allocation.

▪ Disaster response: In the event of a disaster,

communications can continue over air and space

networks even if the terrestrial infrastructure is

damaged.

LEO satellite GEO satellite Starlink satellite

Bandwidth UHF and Ka band C, Ku, Ka band Up to 240 MHz

Altitude 400~1500km More than 36,000km 550~570km

Latency Tens to 100ms More than 500ms 20ms~40ms

Coverage 1000km 15000km

Types Polar, Inclined Stationary relative to the user

Table 2. Comparisons between satellite communication systems.

Fig. 1. 6G non-terrestrial networks.
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However, NTNs encounter several challenges, such

as rapid mobility of satellites or UAVs, long prop-

agation distances, and the absence of precise channel

and uncertainty models for non-terrestrial objects.

To address these challenges, comprehensive model-

ing for satellite or UAV mobility[19], along with NTN

channel models, uncertainty models for non-terrestrial

objects, and objective functions tailored to NTN net-

works should be firstly developed, with a focus on mit-

igating angle or phase errors and accounting for user

terminal mobility. Additionally, the exploration of

beamforming without channel state information at the

transmitter side (CSIT) seeks to adapt to the dynamic

nature of NTN environments, leveraging decentralized

precoding schemes and deep learning to predict opti-

mal beam configurations without explicit channel state

information (CSI)[20-22]. Meanwhile, the concept of RIS

in 6G networks introduces the ability to intelligently

manipulate signal propagation, enhancing the commu-

nication link between satellites and ground terminals

through passive reflection[23-25]. The future of satellite

systems also hinges on the efficient utilization of spec-

trum resources, exploring scenarios where terrestrial

and satellite systems can share spectrum or expand net-

work capabilities through cooperation[26].

2.2 Requirements and Current Status 
For 6G NTNs, several requirements have been pro-

posed[1,3,27], which require a new network structure

and enhanced delay and data rate demands.

In the architecture of 6G NTNs, as proposed in the

International Telecommunication Union (ITU) 6G

white paper[1], there is a significant increase in in-

tegration between NTN compared to 5G NTNs.

Ground platforms will also extend through mobile

base stations (BSs), which can be achieved through

clusters formed by vehicles, ships, and other means.

These mobile BSs can directly provide connectivity.

In the atmosphere, clusters such as drones, aircraft,

and air taxis can be anticipated, used for delivery serv-

ices among others. Additionally, in space, the devel-

opment of various traditional 5G satellites, such as

LEO and GEO satellites, along with advancements in

microsatellites and nanosatellites, also can play a cru-

cial role[2].

The scalability of radio frequency (RF) carrier

bandwidth is essential for facilitating diverse deploy-

ments of wireless access technology in non-terrestrial

systems. 3GPP delineates LTE for a carrier bandwidth

ranging from 1.3 to 20 MHz, and 5G NR for a band-

width spanning from 5 to 100 MHz in frequency range

1 (FR1) and from 50 to 400 MHz in frequency range

2 (FR2). The white paper[3] points out that, ground

operators' infrastructure can be shared for satellite ac-

cess to user equipment (UE) located in different

regions. At the same time, resource utilization opti-

mization/sharing in hybrid systems (6G NTNs and 5G

NTNs) should be maintained even when using non-6G

(non-3GPP) NTNs.

The development of 6G NTN technology is not on-

ly led by governments and operators but also actively

involves some enterprises. The most notable of these

is the SpaceX's Starlink project, where Table 1 states

the key features of Starlink satellites compared with

conventional LEO and GEO satellites. By the end of

2023, Starlink had launched over 2,000 satellites, with

plans to further expand to tens of thousands in the

coming years. This vast satellite network aims to pro-

vide high-speed internet connectivity globally, espe-

cially in remote and underserved areas. Additionally,

other companies such as Amazon's Project Kuiper and

the UK's OneWeb are also actively deploying similar

satellite networks. The participation of these enter-

prises will bring more innovation and competition to

the development of 6G NTN technologies, laying a

solid foundation for the global proliferation of 6G

NTNs.

Ⅲ. Mobile Edge Computing

In this section, we discuss MEC, which is playing

a pivotal role in reshaping the landscape of wireless

communication networks. It revolutionizes the net-

work architecture by bringing the computational re-

sources closer to the users, unlocking unprecedented

levels of performance and efficiency. Here, we present

its fundamental principles, diverse applications, and

the underlying technologies driving its evolution.

The evolution of wireless communication technol-

ogy is ushering in a new era of networks characterized
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by ubiquitous connectivity, linking everyone and ev-

erything, including machines, objects, and devices.

These next-generation networks are poised to deliver

several key advancements, including higher mul-

ti-Gbps peak data speeds, ultra-low latency, enhanced

reliability, massive network capacity, increased avail-

ability, and a more consistent user experience for a

broader user base.

Despite these advancements, such as 5G, offering

speeds approximately 20 times faster than LTE, the

average user may not always experience a significant

improvement in their connectivity experience. This is

because data must travel to the core network, which

is often distant from the end user. To address this

challenge, MEC has emerged as a promising sol-

ution[4]. By integrating into the backhaul network,

MEC brings data processing closer to the user as de-

picted in Fig. 2, resulting in reduced latency, backhaul

traffic, enhanced network efficiency, improved user

experience, and greater network resilience. MEC en-

ables diverse applications to fully leverage the capa-

bilities of 5G/6G technologies, including but not lim-

ited to healthcare, industrial automation, intelligent

transportation systems, and virtual reality.

3.1 MEC Applications

3.1.1 Healthcare

A rapid growth in IoT has resulted in new tech-

nologies like internet of medical things (IoMT)[28] and

wireless body area networks[29] are used in healthcare

for data collection, monitoring, and analysis. IoT de-

vices have limited computation power, battery and

storage capabilities. Therefore, leveraging MEC en-

hances the capabilities of these technologies by utiliz-

ing its communication and computation capabilities at

the network edge, thereby enabling applications like

real-time patient monitoring[30], athlete fitness tracking
[31], and remote surgery[32]. Efforts to enable real-time

monitoring have spurred research into optimizing

computation offloading strategies aimed at minimiz-

ing latency[33-35]. Additionally, considerable attention

has been devoted to reducing the energy consumption

of MEC-based IoMT systems, given the resource-con-

strained nature of IoT devices[36,37]. Moreover, the

transmission of patient data to MEC servers in-

troduces significant concerns regarding security and

privacy, prompting extensive research into safeguard-

ing sensitive healthcare information[38].

3.1.2 Industrial automation

MEC also offers substantial improvements to in-

dustrial automation through its provision of ultra-low

latency, high bandwidth, and localized processing

capabilities. This facilitates predictive maintenance[39],

quality control[40], inventory and product tracking[41],

and use of AI in industrial processes[42], leading to

enhanced efficiency, productivity, and safety. The pri-

mary consideration when implementing MEC systems

revolves around determining the optimal locations for

deploying MEC servers, prompting a plethora of stud-

ies aimed at identifying effective deployment strat-

egies[43,44]. Since Industrial-IoT[45] is playing a crucial

rule in industrial automation through deployment of

sensors, actuators and connected devices, this gen-

erates a huge amount of data, posing challenges re-

garding how and where to offload the data effectively.

To address this challenge, research has focused on de-

veloping computation offloading strategies tailored to

different objectives, such as latency minimization[46],

energy minimization[47] and load balancing[48].

However, since data needs to be offloaded to the MEC

server from a diverse set of devices, several security

and privacy issues can arise such as data breaches and

unauthorized access. Consequently, research efforts

have been directed towards mitigating these risks and

ensuring the security of MEC-enabled industrial auto-

mation systems[49,50].

3.1.3 Smart driving vehicles

Smart driving vehicles (SDVs) utilize MEC to nav-

Fig. 2. Mobile edge computing systems.
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igate complex road conditions, enabling real-time in-

formation sharing among drivers to prevent accidents

and facilitate autonomous vehicle operation.

Foundation of MEC-enabled SDV rests upon the stra-

tegic placement of computing resources in order to

minimize placement costs and enhancing communica-

tion speeds. Dimensioning and layout planning

emerge as crucial endeavors in [12], shedding light

on the optimization of 5G-based vehicular edge com-

puting networks. Furthermore, networking between

autonomous vehicles plays an important role in safer

roads. In [10], a framework is proposed for intelligent

networking among autonomous vehicles with MEC

support, updating driving models for evolving

environments. Beyond vehicle-to-vehicle communica-

tion, the interactions encompassing vehicle-to-every-

thing (V2X) and vehicle-to-infrastructure (V2I) com-

munications hold significant importance, underscoring

the necessity of scheduling these diverse communica-

tion channels as a critical issue. The work in [11] pres-

ents a hybrid transmission and reputation management

system, leveraging 5G V2X technology and ve-

hicle-to-vehicle and V2I scheduling algorithms to en-

hance reliability in SDVs with MEC. Amidst the flur-

ry of technological advancements, concerns regarding

privacy and security loom large. Recognizing the need

for robust authentication frameworks, [13] introduces

a pioneering privacy-preserving authentication frame-

work tailored for secure communication in 5G-en-

abled vehicular networks. Similarly, [14] proposes a

software-defined cooperative data sharing archi-

tecture, bolstering communication efficiency within

5G-enabled vehicular ad hoc networks and fostering

a culture of seamless data exchange among SDVs.

3.1.4 Virtual reality

Edge server computation offloading offers a prom-

ising solution for reducing the bulk of virtual reality

glasses, thereby enhancing the user experience in vir-

tual reality, augmented reality, and mixed reality

applications. Cache and computing resource deploy-

ment have been studied for 5G networks in [51] to

optimize content distribution efficiency and minimize

network transmission delay for augmented reality

applications. Furthermore, the intersection of virtual

reality and AI necessitates robust computational capa-

bilities and ample storage, making MEC an ideal

solution. The work in [52] presents an edge-based col-

laborative object recognition solution for mobile Web

augmented reality in the 5G era, employing a deep

neural network partitioning and adaptive computation

scheduling to balance user experience and computing

cost, validated through 5G trial network experiments.

Recognizing the pivotal role of MEC servers in proc-

essing, motion-aware communication planning emerg-

es as another significant challenge to enhance the

quality of experience (QoE) for end-users[53,54].

Addressing this, [54] proposes an edge-assisted mul-

ti-user collaborative framework for mobile web AR,

featuring efficient communication planning and mo-

tion-aware key frame selection mechanisms, validated

through real-world 5G network experiments.

3.2 Goals of MEC Computation Offloading

3.2.1 Minimization of latency

Efforts in MEC computation offloading studies aim

to reduce the delay between task generation and ex-

ecution by leveraging proximity to end-users or

devices. This includes exploring techniques such as

edge caching, task partitioning, and predictive off-

loading[5558].

In [55], joint communication and computation re-

source allocation are explored to minimize the weight-

ed sum-delay in cloud-edge collaboration systems, of-

fering optimal task splitting strategies. Additionally,

[56] introduces a block coordinate descent based task

offloading scheme in an intelligent reflecting surface

enabled MEC system, aiming to minimize computa-

tion latency while adhering to practical constraints.

Moreover, [57] presents a joint partial offloading and

resource allocation scheme tailored for D2D-enabled

MEC offloading scenarios, tackling interference man-

agement challenges in shared spectrum to minimize

total latency. Lastly, [58] introduces a novel hybrid

online-offline learning-based task offloading policy

for multi-user multi-server MEC systems, showcasing

notable reductions in computation delay by dynam-

ically adjusting the offloading strategy based on MEC

server queuing status and network dynamics.
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3.2.2 Reduction of energy consumption

Research in this area focuses on offloading compu-

tational tasks to nearby edge servers or devices to con-

serve energy by reducing the workload on re-

source-constrained mobile devices. This involves

techniques such as task consolidation, adaptive re-

source allocation, and energy-efficient schedul-

ing[59-61].

In [59], an efficient approach is introduced for joint

task offloading decision, local CPU frequency sched-

uling, power control, computation resource, and sub-

channel resource allocation in MEC within non-or-

thogonal multiple access (NOMA)-based HetNets,

achieving near-optimal energy consumption savings

for all users. Meanwhile, [60] proposes a Q-learn-

ing-based method for joint optimization of computa-

tion offloading and resource allocation in a dynamic

multiuser MEC system, considering delay constraints

and uncertain resource requirements, resulting in sig-

nificant energy savings compared to baseline methods,

with the DDQN-based method closely approaching

exhaustive method performance. Additionally, [61] in-

troduces a partial computation offloading strategy

based on a novel hybrid metaheuristic algorithm

named genetic simulated annealing-based particle

swarm optimization, aiming to minimize energy con-

sumption in a multiuser MEC system by jointly opti-

mizing task offloading ratio, CPU speeds, allocated

bandwidth of available channels, and transmission

power.

3.2.3 Joint optimization of latency and

energy consumption

Addressing both latency and energy consumption

simultaneously involves developing efficient algo-

rithms and strategies for task offloading that optimize

both factors to enhance overall system performance.

This may include: trade-off analysis, hybrid ap-

proaches, and dynamic optimization[62-64].

In [62], an iterative algorithm is presented for mini-

mizing the completion time of tasks and energy con-

sumption of all users in an uplink NOMA-based MEC

network, considering computation latency, uploading

data rate, time sharing, and edge cloud capacity

constraints. Additionally, [63] proposes a non-domi-

nated sorting genetic algorithm to find a tradeoff be-

tween energy consumption and latency in an

IoT-based MEC network. Furthermore, [64] in-

troduces a dynamic online task offloading strategy to

minimize the weighted sum of energy consumption

and execution delay of mobile devices in an MEC

system with energy harvesting capability.

3.2.4 Enhancement of capacity

By offloading computational tasks from centralized

cloud servers to edge nodes, MEC aims to enhance

the overall capacity and scalability of the network,

accommodating the increasing demand for real-time

applications and services. This involves exploring

techniques such as: load balancing, edge resource pro-

visioning, and dynamic scaling[65,66].

In [65], a graph neural network (GNN)-based col-

laborative deep reinforcement learning model is pro-

posed to generate resource provisioning and mitigate

strategies against distributed denial of service attacks.

GNN assists in transferring computing tasks between

MEC servers to alleviate load imbalance.

Furthermore, [66] introduces Lyapunov and alternat-

ing direction of multipliers-based methods to obtain

a joint parallel task offloading and load balancing pol-

icy for MEC systems with multiple cooperative

servers. This approach addresses energy consumption

and execution delays under user battery level stability

and delay constraints.

3.3 Key Technologies for Enabling MEC 
Implementation

3.3.1 Software-defined networking (SDN)

SDN empowers dynamic management of network

resources, streamlining communication between edge

devices and servers to enhance network performance

in MEC applications. Several research efforts have fo-

cused on leveraging SDN in MEC systems to optimize

resource allocation and reduce energy consumption

and processing latency [67]. In [68], the authors in-

troduce an SDN-based MEC system, followed by the

development of a stochastic game-based resource allo-

cation algorithm leveraging prioritized experience re-

plays to reduce energy consumption and processing
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latency using multiagent reinforcement learning.

Furthermore, [69] presents a solution leveraging SDN

for transparent session and service continuity in dy-

namic multi-access edge computing scenarios.

3.3.2 Network function virtualization (NFV)

NFV revolutionizes network functions by enabling

dynamic deployment and scaling of services at the

edge, bolstering agility and resource optimization

within MEC environments. Numerous studies have in-

vestigated the application of NFV in MEC systems

to optimize resource utilization and enhance service

reliability. The work in [70] explores reliable virtual

network function (VNF) service provisioning to en-

sure mobile user reliability, offering integer linear pro-

gramming and logarithmic-approximation solutions.

The work in [71] considers VNF placement and traffic

routing in MEC settings, aiming to minimize link load

ratios and fulfill user delay requisites.

3.3.3 Information centric networking (ICN)

ICN prioritizes content retrieval based on content

names, promoting efficient content delivery and cach-

ing mechanisms at the edge to support MEC applica-

tions with enhanced accessibility. Several research en-

deavors have explored the integration of ICN princi-

ples into MEC frameworks to optimize resource allo-

cation and bolster system capacity[72]. The study in

[73] investigates optimal resource allocation in in-

formation-centric wireless networks to maximize

spectrum efficiency and system capacity.

3.3.4 Network slicing

Network slicing facilitates the creation of isolated

virtual networks customize for specific MEC applica-

tions or user needs, allowing for tailored network con-

figurations and resource allocation to improve

performance. Additionally, [74] introduces a scheme

merging multi-access edge computing and network

slicing to bolster slicing capabilities at the 5G network

edge, while [75] presents a new framework optimizing

network slicing in MEC systems, aiming to maximize

operator revenue by optimizing slice request admis-

sion and resource allocation in light of traffic

fluctuations.

3.3.5 Edge computing platforms and

frameworks

Various platforms and frameworks, such as

OpenNESS, AWS IoT Greengrass, Microsoft Azure

IoT Edge, and Google Cloud IoT Edge, provide tools

and APIs for developing and deploying edge

applications. These platforms enable developers to

build and manage MEC applications efficiently.

Ⅳ. Integrating MEC into 6G NTNs

In this section, we divide the 6G NTN environment

into three cases and introduce the role of MEC and

possible implementation scenarios, along with related

research for each case. These case studies might help

us understand the potential of MEC technologies for

various 6G NTN application scenarios.

4.1 Access to Both TNs and NTNs
Let us first consider the case where UEs can access

both TNs and NTNs for computing task offloading

as depicted in Fig. 3. Satellite communication operates

with multiple LEO satellites, enabling communication

with UEs, BSs, and the main server. Depending on

the UE's capability, some UEs can communicate with

satellites using their satellite communication modules,

allowing them to directly offload tasks to satellites.

For UEs without satellite modules, nearby BSs or sat-

ellite gateways can support providing satellite commu-

nication links. In this network environment, MEC can

be deployed at satellites and BSs (or gateways).

Fig. 3. MEC for accessing to both TNs and NTNs.
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▪ MEC at satellites: First, we consider the task

to be offloaded directly from UEs or BSs to sat-

ellites where MEC is deployed, enabling the uti-

lization of satellite MEC for computing tasks.

Additionally, the broad coverage of satellites en-

ables the processing of tasks from a wider area

of UEs[76-78]. While GEO or MEO satellites have

issues with unstable connections or long latency

due to their high altitude, the use of LEO satel-

lites has mitigated these problems. However, us-

ing satellites inherently introduces a certain lev-

el of latency. In [52], a traffic distribution

scheme is proposed that integrates satellite and

ground networks to allocate traffic according to

different needs such as ultra-reliable low latency

communication (URLLC) and enhanced mobile

broadband (eMBB) traffic. This scheme off-

loads URLLC traffic to the terrestrial backhaul

to meet its stringent latency requirement, while

eMBB traffic is offloaded to the satellite due

to its high data rate needs and lower sensitivity

to delay.

▪ MEC at BSs or gateways: Second, we consider

the scenario where BSs (or gateways) are also

equipped with MEC capabilities. In this case,

BSs can provide edge computing and make de-

cisions regarding the task offloading to either

BSs or satellites, which is advantageous in de-

lay-critical situations. However, this can lead to

issues related to BS performance. Servicing a

large number of UEs and requiring high-per-

formance computing for MEC can result in sig-

nificant power consumption and the need for

high-specification equipment. Deploying

high-power, high-specification BSs in compli-

cated environments can be challenging[21,79]. In

addition, BSs can offload tasks to the data center

or main server, which is more suitable for heav-

ier tasks. Since BSs are wired to the main serv-

er, communication performance is generally bet-

ter when using BSs. However, relying solely on

BSs can lead to traffic overload. Using satellites

for traffic distribution (load balancing) or when

the path to the main server is very long, commu-

nication performance through shorter hops via

satellite can be better. Furthermore, deploying

MEC at both satellites and ground BSs can uti-

lize partial computing technology for faster

processing. In particular, [77] introduces the

problem of energy dissipation optimization in a

specific case, focusing on the energy con-

sumption of ground users and LEO systems. In

such cases, the LEOs edge can coordinate with

each BS server to assist in handling tasks for

ground UEs. However, this increases the overall

network task scheduling complexity and can

lead to increased latency.

4.2 Access only to NTNs
Fig. 4 illustrates the second scenario that involves

situations where communication is only possible via

satellite, not terrestrial networks, applicable in ex-

tremely remote areas like open seas, deserts, or

rainforests. Satellites can communicate with other sat-

ellites and eventually reach the main server. UEs with

their satellite communication modules can communi-

cate directly with satellites, and typical UEs can con-

nect to satellites through a gateway with satellite com-

munication capabilities. The advantage is enabling

communication in special regions where no other al-

ternatives are available, but a disadvantage is in-

creased latency as the number of relay satellites in-

creases[16,17,80,81].

Moreover, most researchers have studied network

architectures and proposed a variety of task-process-

ing procedures. The work in [80] introduces the archi-

tecture and application scenarios of satellite-terrestrial

networks (STNs), implementing MEC for QoS im-

provement, and proposed satellite MEC enabling UEs

Fig. 4. MEC for accessing only to NTNs.
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without a proximal MEC service can directly connect

to a satellite to enjoy MEC services via satellite links.

In this way, STNs also can cooperate with parallel

computation satellite-terrestrial networks. In [80],

multiple methods of computation offloading in SMEC

have been proposed, representing various application

scenarios. The work in [17] incorporates multi-layer

heterogeneous edge computing clusters to enable serv-

ice innovation and business agility in future networks.

It addresses the challenges of meeting QoE require-

ments, cooperative computation offloading, mul-

ti-node task scheduling, mobility management, and

fault/failure recovery. The paper highlights the need

for reliable reception of large-capacity concurrent sig-

nals in the proposed architecture. It is also explored

the possibility of devices with edge computing capa-

bilities forming clusters to provide edge computing

services for other devices. The work in [80] explores

latency and energy cost optimization in MEC-en-

hanced SAT-IoT networks in remote, sparsely popu-

lated areas. It formulates the problem as a dynamic

mixed-integer program, breaking it down into two

sub-problems: resource allocation with fixed user as-

sociation and offloading decisions, and joint user asso-

ciation and offloading decisions with optimal resource

allocation.

4.3 UAV-Aided Access to NTNs
The third scenario involves using UAVs to support

satellite link access as depicted in Fig. 5. Typically,

UAVs are not commonly used for communication

support due to their limited battery flight time. UAVs

are deployed in challenging environments like moun-

tains, seas, or deserts to provide support. Here, UAVs

can serve as mobile BSs or relays for satellites
[15,17,24,26,82,83]. In shadowed areas where there is no

connection to ground BSs, UAVs can fly to provide

communication services to UEs[84]. If MEC is de-

ployed on UAVs, they can perform computing serv-

ices for UEs or offload computing tasks to satellites.

The work in [82] proposes a computation offloading

scheme aimed at reducing energy consumption in

wireless networks. Some researchers have studied the

computation offloading and resource allocation issues

within MEC-integrated air-ground vehicle networks

[85,86]. The work in [86] addresses computation off-

loading and resource allocation issues within MEC-in-

tegrated aerial-terrestrial vehicular networks. To solve

such complex optimization problem, a reinforcement

learning-based approach was utilized.

In addition, RISs are appreciated for their ability

to precisely reflect signals, enhance spectrum and en-

ergy efficiency, and regulate various waveform attrib-

utes such as amplitude, frequency, polarization, and

phase through passive reflections. The discussion on

the application of RIS-carried UAVs in communica-

tion systems is paralleled by the growing interest in

RISs within the wireless research community [23,87].

Due to the ultra-high-frequency characteristics of the

THz band, the impact of signal interference caused

by obstacles is significant, so using RIS can reduce

this interference. In [23], a decaying deep Q-network

is proposed, which can reduce average energy con-

sumption by combining UAV with RIS and providing

joint enhancement for UAV direction, and pow-

er-sharing.

The characteristics of UAVs are key to establishing

the 3D wireless communication environment expected

in 6G, utilizing their mobility for optimal communica-

tion positioning and deployment without terrain or in-

frastructure constraints, especially in disasters or

emergencies. However, limitations in battery capacity

restrict flight, hence network maintenance time, and

they are affected by weather and various environ-

mental conditions. Research to overcome these limi-

tations is underway[1,87]. For instance, a MEC-driven

UAV routine inspection scheme is proposed in [87]

for wind farms to reduce operating and maintenance

costs and improve inspection efficiency.

Fig. 5. MEC for UAV-aided accessing to NTNs.
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Ⅴ. Conclusions 

This paper offers a thorough survey on the in-

tegration of 6G NTNs with MEC. First, we have re-

viewed characteristics and current status of 6G NTNs

and the role of MEC and its key applications in differ-

ent research endeavors, including latency mini-

mization, energy efficiency, and joint optimization of

energy and latency. Finally, we have explored the de-

ployment possibilities for MEC servers and present

diverse network scenarios, such as accessing both TN

and NTNs, exclusive access to NTNs, and accessing

NTNs via UAVs.

Future works could focus on developing adaptive

resource allocation strategies for dynamic network

conditions. In order to enable smooth interoperability

between terrestrial and non-terrestrial MEC networks,

future efforts could focus on standardization of inter-

faces and protocols to ensure high-quality service

experience.
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