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Abstract
The complex modeling and computational cost are unavoidable in analysis of finite element models (FEMs) when mechani-
cal properties of woven composite materials are predicted. To overcome the drawbacks of FEMs, two different artificial 
neural network models (ANNMs) based on quasi-static axial compression experimental data of 2.5D woven composite plates 
(2.5DWCPs) are constructed: (1) The direct strength prediction model (DSPM) is a non-destructive way to predict strength, 
which is meaningful in engineering; (2) The indirect strength prediction model (ISPM) is based on stress–strain curves, which 
firstly proposes a simplified data processing method including the state variables (SVs). The SVs are introduced to modify 
the experimental stress–strain curves, which not only reduces training data size but also significantly improves prediction 
accuracy. Then, the performance of the DSPM and the ISPM has been evaluated by numerical examples. The results indicate 
that the DSPM has simple and direct expressions of input parameters (IPs) and output parameters (OPs), which makes it easier 
to construct and train ANNMs. The ISPM not only utilizes sufficient training data from experiments but also performs well 
in predicting stress–strain curve and failure strain. In short, two proposed ANNMs have ability to fast and accurately predict 
compression strength, which are more suitable for engineering than FEMs. To reduce experimental costs, the DSPM is pro-
posed to produce reasonable results. If a lot of experimental data are prepared, the ISPM can produce more accurate results.
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1  Introduction

Composite materials are widely used in various aerospace 
equipment [1] due to their excellent characteristics such as 
low specific weight, high specific strength and large spe-
cific modulus [2]. Three-dimensional (3D) woven compos-
ites have a complex interlocking structure in space network, 
which overcomes the weakness of traditional composite 
laminates such as weak interlayer performance and poor 
impact resistance [3]. What’s more, it has strong designabil-
ity and excellent mechanical properties, which is more suit-
able for engineering applications. At present, the weaving 
process of most 3D woven composites cannot be separated 
from manual assistance. However, as a kind of 3D woven 

composites, the automated manufacturing process of 2.5D 
(three-dimension angle-interlock) [4] woven composites 
is more perfect. Therefore, 2.5D woven composite plates 
(2.5DWCPs) is more widely used because it has advantages 
of low cost and easy preparation [5].

To take full advantage of the potentials of 2.5DWCPs, 
many investigators have proposed abundant analytical mod-
els and finite element models (FEMs) to accurately predict 
the mechanical properties of 2.5DWCPs. Kang et al. [6] 
developed the Eshelby-Mori-Tanaka inclusion theory and 
the stiffness volume average method to predict the effective 
properties of polymer composite reinforced by fiber-rod and 
3D weavings (PCFR3DWs). To avoid geometry modeling 
and meshing of complex reinforcements and matrix regions 
in textile composites, the fiber-reinforced voxel modeling 
technique is proposed by Xie et al. [7]. This technique can 
accurately analyze stress fields and predict the stiffness of 
textile composites. What’s more, Zhang et al. [8] proposed a 
meso-scale voxel-based model established by the measured 
parameters from the CT image, which is capable of accu-
rately predicting mechanical properties of warp-reinforced 
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2.5D woven composites. Hallal et al. [9] proposed an ana-
lytical model to predict the effective elastic properties for 
2.5DWCPs, in which three-stages homogenization method 
(3SHM) was adopted. Yao and Liu et al. [10] estimated the 
mechanical properties of 2.5D woven SiO2f/SiO2 ceramic 
matrix composite by using stiffness averaging methods 
(SAMs). A semi-analytical method has been proposed by 
Chen et al. [4] to express elastic constants in terms of micro-
structure geometrical parameters and constitute properties, 
which is applied to predict elastic constants of 2.5D continue 
carbon fiber reinforced silicon carbide (C/SiC) composites. 
Based on a meso-scale representative volume element (RVE) 
model, Liu et al. [11] established a macro-scale progres-
sive damage model to analyze the damage behaviors of 3D 
angle-interlock woven composites under uniaxial tension. 
In addition, Younes and Zaki [12] optimized the RVE of 
2.5D interlock composites to enhance damage resistance 
and elastic stiffness. Due to their complicated macro/micro 
structure, however, it is difficult to analyze 2.5D/3D woven 
composite materials using the FEMs. The FEMs not only 
have complex modeling process but also require to obtain 
material properties such as elastic modules, strength and 
failure modes by different kinds of mechanical experiments. 
Therefore, investigators attempted to explore novel methods 
to research the issues encountered in FEMs.

In the process of studying mechanical properties and fail-
ure modes of 2.5DWCPs, it is difficult to accurately predict 
the strength of 2.5DWCPs with angle-ply woven laminas 
because of the obvious nonlinear phenomenon in quasi-static 
experiments. What’s more, the tension tests along the warp 
and weft directions have been conducted by Ma et al. [13], 
in which it was found that the stress–strain curves exhibit 
mostly nonlinear behaviors. Odegard et al. [14] developed a 
FEM to predict the nonlinear response of 8HS woven graph-
ite/PMR-15 composite material subjected to shear-domi-
nated biaxial loads. Ogihara and Reifshider [15] investigated 
nonlinear stress–strain behavior in woven glass/epoxy lami-
nates under off-axis tension by experiments. Moreover, the 
one-parameter plasticity model was established to predict 
the nonlinear effect. Cousigne et al. [16] developed a non-
linear material model for thick shells of textile composite 
materials, which has been evaluated by tension and compres-
sion tests on plain and twill weave carbon fiber composites. 
By combining plain-woven RVE and a nonlinear three-phase 
bridging model, Wang et al. [17] presented an analytical 
model to describe the nonlinear behavior of a plain-woven 
composite under off-axis loads. To sum up, the nonlinear 
effect is non-negligible in the predicting mechanical proper-
ties of 3D woven composite materials.

With the rapid development of high-performance comput-
ers and data-driven analysis in recent years, machine learn-
ing algorithms (MLAs) have been applied widely in vari-
ous fields [18]. The MLAs not only extract useful physical 

characteristics from massive experimental data but also 
directly predict mechanical properties of composite mate-
rials without complex modeling and analysis in FEM [19, 
20]. Zhang et al. [21] presented a method based on MLA 
and FEM to predict the strength and progressive damage 
behavior of carbon fiber-reinforced polymer (CFRP) lami-
nates with holes. Sharan and Mitra [22] developed an ANN 
model with significant parameters affecting the strength 
properties of CFRP laminates, and the hyper-parameter 
of the ANN model has been optimally selected. Kim et al. 
[23] combined principal component analysis (PCA) with 
deep neural network (DNN) to build the data-driven model, 
which can efficiently predict the stress–strain curves of uni-
directional (UD) composites. ANN model was developed 
by Gowid et al. [24] to predict the high nonlinear crushing 
behavior of plain weave composite hexagonal quadruple ring 
system (CHQRS). Liu et al. [25] proposed a micromechani-
cal model by mechanics of structure genome (MSG) and 
DNN model, which can capture the failure initiation at the 
fiber and matrix level in textile composites. Halvaei et al. 
[26] investigated the flexural load and toughness of carbon 
woven textiles with different mesh sizes and volume percent-
ages. They developed an ANN model to predict the flexural 
strength of the carbon textile reinforced concrete samples. 
However, the cost of a large number of experiments is very 
expensive, and it is difficult to satisfy the requirements in 
engineering. In addition, the integrity and richness of train-
ing datasets obtained from experiments cannot be ensured. 
Therefore, most datasets in existing investigations origin 
from the results of numerical simulation in FEMs.

By reviewing the literature, it is found that the complex 
modeling and computational cost are unavoidable in the 
analysis of FEMs when mechanical properties of woven 
composite materials are predicted. However, the MLAs 
have the advantage of processing data. To overcome the 
drawbacks of FEMs, two different ANNMs based on quasi-
static axial compression experimental data of 2.5DWCPs are 
constructed. To reduce experimental costs, this work firstly 
attempts to construct the direct strength prediction model 
(DSPM), in which input parameters (IPs) and output param-
eters (OPs) have direct expression. Thus, it is more conveni-
ent to train ANNMs. In addition, a number of stress–strain 
curves have been obtained in present experiment. To effec-
tively utilize these experimental data, the indirect strength 
prediction model (ISPM) has been also constructed. Due to 
involvement of rich experimental data, the ISPM is more 
accurate in predicting compression strength. However, for 
the ISPM, the sudden stress drop will significantly influence 
the prediction accuracy. To avoid such issue, a data reduction 
method is firstly proposed. Therefore, the modified ISPM 
can be suggested to accurately predict stress–strain curve 
and failure strain, when sufficient data have been obtained. 
The specific technology research roadmap is shown in Fig. 1.
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2 � Compression Experiments

CCF800H/5284 was selected as the raw material for 
weaved composite. M2.5D weaving process and RTM 
molding techniques were applied in manufacture. The 
details of the weaving scheme, geometric dimension and 
quantity of test specimen are shown in Table 1. A0 and A1 
have a similar stacking sequence and different angle-ply 
weaved laminas. B0 and B1 insert cross-ply weaved lami-
nas based on A0 and A1. C changes the stacking sequence 
of cross-ply and angle-ply weaved laminas compared with 
A0 and B0.

The warp compression experiments of weaved com-
posite specimen can refer to ASTM D6641 standard. The 
compression experimental data were obtained from five 
types of 2.5DWCPs, which include 29 specimens in total. 
The nominal length of specimen is 140mm and the nomi-
nal width of the specimen is 12 mm. The nominal thick-
ness of specimen is presented in Table 1. Each specimen 

was measured before compression experiment. Figure 2 
shows the average geometric parameters of 2.5D woven 
composites.

Figure 3a and b present the measurement process and the 
whole testbench of the specimen, respectively. The displace-
ment loading mode was adopted in experiment and the test 
loading rate is 0.5mm/min. The compressive elastic moduli 
of five different types of 2.5DWCPs were measured. In addi-
tion, the ultimate failure loads and failure modes of specimens 
were acquired. The DH3820 static strain test system was used 
to record the strain changes during experiments. Finally, the 
experimental results of 29 stress–strain curves were obtained. 
For further analysis, the stress–strain curves and damaged 
specimens of five different types of 2.5DWCPs obtained from 
the compression experiment are all shown in Fig. 4.

Based on the stress–strain curves obtained from experi-
ments, the specific initial elastic modulus and compression 
strength of five types of 2.5DWCPs are presented in Fig. 5. 
The average initial moduli of A0, A1, B0, B1 and C type 
woven composite plates are 19.02, 8.28, 38.57, 24.77 and 
53.84 GPa. The average strength of A0, A1, B0, B1 and C 
type woven composite plates are 141.91, 178.93, 224.02, 
185.19 and 304.10 MPa.

3 � Stress Prediction Model Based on ANN

3.1 � Basic Principle

ANN is one type of MLAs. The main feature of ANNs is that 
the network includes input, hidden and output layers. The 

Fig. 1   The technology research roadmap in present work

Table 1   Details on different types of 2.5DWCPs

Plate ID Weaving scheme Thickness/mm Quantity

A0 [90∕ ± 45∕90]
S

3.59 5

A1 [90∕ ± 63.43∕90]
S

4.56 5

B0 [90∕45∕0∕ − 45∕90]
S

4.31 5

B1 [90∕63.43∕0∕ − 63.43∕90]
S

5.28 7

C [90∕0∕ ± 45∕0∕90]
S

5.05 7
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number of different kinds of layers can be flexibly defined, 
which is commonly determined by complexity and scale of 
training data structures. The schematic of the ANN model 
is illustrated in Fig. 6. From the perspective of mathematic, 
ANN is composed of linear matrix operation and nonlinear 
activation function, which has a strong ability of characteri-
zation for data structures [27, 28].

The computational formula at each node of the hidden 
layers and output layers is presented as follows

where O denotes the output of node i, xi and wi represent 
the output of all nodes in previous layer and corresponding 

(1)O = f

(
n∑
i=1

xiwi + b

)

weights, respectively. b is the bias of the previous layer. f 
(x) signifies the activation function of neuron in hidden lay-
ers. The common activation functions [29, 30] include Soft-
plus ( f (x) = ln (1 + ex) ), Sigmoid ( f (x) = 1∕(1 + e−x) ) and 
ReLU ( f (x) = max (0, x)).

The training process for a concrete structure of a neural 
network means that the weight and bias should be updated 
to characterize the corresponding mapping relationship 
between input layers and output layers. During the training 
process, the weights and biases of each neuron in hidden 
layers are constantly adjusted by backpropagation (BP). 
The training of neural networks does not stop until the 
error between predictions and outputs reaches the preset 
convergence condition. The training process of ANN is 
shown in Fig. 7.
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Fig. 2   The average geometric parameters of 2.5DWCPs

Fig. 3   Preparation and test-
bench of compression experi-
ment

(a) Measurement of specimens (b) Testbench of specimen
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3.2 � Compression Strength Prediction Model

To predict compression strength in the warp direction of 
2.5DWCPs with different stacking sequences, it is signifi-
cant to determine the effective inputs of neural network. 
It is natural that the parameters containing information of 
stacking sequences and ply angles should be selected as 
IPs. However, five types of 2.5DWCPs have different lay-
ers and discontinuous ply angles. Therefore, the number 
of layers and angles of lamina are difficult to be directly 
utilized as IPs of ANNM.

Experiments and numerical analysis are two com-
mon methods to obtain the elastic moduli of 2.5DWCPs. 
The compression modules in the warp direction can be 
acquired by non-destructive compression experiments. 
What’s more, SAM and FEM can also calculate compres-
sion modules. The elastic moduli of 2.5DWCPs is the sim-
plest quantitative characterization for stacking sequences 
and ply angles. Therefore, the initial compression modules 
in the warp direction are selected as the first IP of ANNM.

Considering the slight nonlinear effects during the com-
pression experiment, for the prediction of compression 

(a) A0 woven composite (b) A1 woven composite

(c) B0 woven composite (d) B1 woven composite

(e) C woven composite

0.000 0.004 0.008 0.012 0.016
0

40

80

120

160

200

S
tr
es
s/
M
P
a

Strain

A0-1-2

A0-1-3

A0-1-4

A0-1-5

A0-1-6

5 A0 specimens

0.000 0.005 0.010 0.015 0.020 0.025
0

40

80

120

160

200

240

5 A1 specimens

S
tr
es
s/
M
P
a

Strain

A1-1-1

A1-1-2

A1-1-3

A1-1-4

A1-1-5

0.000 0.003 0.006 0.009 0.012
0

50

100

150

200

250

300

5 B0 specimens

S
tr
es
s/
M
P
a

Strain

B0-1-1

B0-1-2

B0-1-3

B0-1-4

B0-1-6

0.000 0.003 0.006 0.009 0.012 0.015
0

50

100

150

200

250

7 B1 specimens

S
tr
es
s/
M
P
a

Strain

B1-1-2

B1-1-3

B1-1-4

B1-1-5

B1-1-6

B1-1-7

B1-1-8

0.000 0.002 0.004 0.006 0.008 0.010
0

60

120

180

240

300

360

7 C specimens

S
tr
es
s/
M
P
a

Strain

C-1-1

C-1-3

C-1-4

C-1-5

C-1-6

C-1-7

C-1-8

Fig. 4   The stress–strain curves of 2.5DWCPs
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strength, the geometry dimensions of 2.5DWCPs are 
critical influence factors. The nominal lengths of five 
2.5DWCPs are constant. In addition, the widths of 
2.5DWCPs are nearly equal to 12mm, which are shown in 
Fig. 2a. The thickness of specimen changes with the type 
of 2.5DWCPs (A0, A1, B0, B1 and C), which is shown 
in Fig. 2b. In other words, the cross-sectional area of the 
compression specimen is mainly dominated by the thick-
ness. Therefore, it is natural to set the thickness of speci-
men as the second IP of ANNM.

To illustrate more clearly the physical relationship 
between the selected IPs (the initial compression mod-
ules and the thickness of the specimen) and OP (the com-
pressive strength), the stress–strain relationship in the 
warp compressive direction of 2.5DWCPs is presented in 
Eq. (2).

where the subscript ‘wc’ means the direction of warp com-
pression and EEq

wc means the equivalent modulus. In addition, 

(2)�wc = EEq
wc
�wc

(a) Initial elastic moduli (b) Compression strength

A0-J A1-J B0-J B1-J C-J
0

10

20

30

40

50

60

70

Mean and Standard Deviation

Specimen Initial Modules

In
it
ia
l
M
o
d
u
le
s/
G
P
a

Specimen Type
A0-J A1-J B0-J B1-J C-J

0

50

100

150

200

250

300

350

Mean and Standard Deviation

Specimen Strength

S
tr
en
g
th
/G

P
a

Specimen Type
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Fig. 6   The schematic of Arti-
ficial Neural Network Models 
(ANNMs)

Fig. 7   Training process of Artificial Neural Network (ANN)
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σwc and εwc denote stress and strain, respectively. By equiva-
lent substitution, Eq. (3) can be obtained.

where A, W and T signify cross-sectional area, width and 
thickness of the specimen, respectively. L denotes the nomi-
nal length of the specimen. Fwc and uwc denote the applied 
force and displacement, and kwc denote the stiffness.

It must be noted that W and L are basically constant. Then, 
the three variables EEq

wc , T and kwc can be utilized as input 
parameters for model training. As long as two of three varia-
bles are known, the third variable can be determined. It is clear 
that EEq

wc and kwc have similar physical meanings. However, the 
dimension of EEq

wc is (N/mm2) and the dimension of kwc is (N/
mm). Dimension of EEq

wc is the same as compression strength, 
so EEq

wc is selected as the first input parameter. In addition, the T 
changes with the layup of 2.5D woven composite plates. Thus, 
T is selected as the second input parameter.

Based on the observation of stress–strain curves in Fig. 4, 
the compression modulus before the ultimate failure load has 
slight nonlinear effects. Therefore, while the initial compres-
sion modulus EEq

wc is assumed to be constant, Eq. (2) can be 
further rewritten as follows

Furthermore, based on the weaving scheme and thickness 
shown in Table 1, it can be found that as the layer number 
of cross-ply and angle-ply laminates increases, the nonlinear 
effect is gradually relieved. In other words, the thickness of 
the specimen directly reflects the information of the number 
of layers and ply angles and indirectly reflects the compression 
behaviors of the 2.5DWCPs. Thus, the thickness of specimen 
also strongly relates to [σwc]s.

To validate hypothesis mentioned above, the correlation 
analysis of the thickness, initial compression elastic modulus 
and strength of 2.5DWCPs is carried out. The expression of 
Pearson correlation coefficient matrix is presented in Eq. (5).

where n denotes the number of specimens, r (X, Y) denotes 
the Pearson correlation coefficient between X and Y vectors, 

(3)

⎧⎪⎨⎪⎩

�wc = Fwc

�
A

�wc = uwc
�
L

A = W ⋅ T

Fwc = kwc ⋅ uwc

→

kwc

W ⋅ T
=

E
Eq
wc

L

(4)
[
�wc

]
s
= EEq

wc

[
�wc

]
f

(5)

r(�,�) =

n∑
i=1

�
Xi − X

��
Yi − Y

�

�
n∑
i=1

�
Xi − X

�2 n∑
i=1

�
Yi − Y

�2

�(�,�,�) =

⎡⎢⎢⎣

r(�,�) r(�,�) r(�,�)

r(�,�) r(�,�)

syms r(�,�)

⎤⎥⎥⎦

R (X, Y, Z) signifies the Pearson correlation coefficient 
matrix. In this work, X, Y and Z respectively represent the 
thickness, initial compression elastic modulus and strength 
of specimens.

Figure 8a shows the scatter spatial distribution of speci-
men parameters. It can be found that both the initial com-
pression modulus and thickness can clearly divide the 
2.5DWCPs into five clusters of data points, which just 
verifies the potential physical relationship between the IPs 
and the OPs. What’s more, the projections of Strength-
Modules and Strength-Thickness graphs are also given, 
which is beneficial for visually capturing the relation 
between IPs and OPs. Figure 8b to g present Pearson cor-
relation coefficient matrixes of A0, A1, B0, B1, C and all 
types of 2.5DWCPs. According to the results from Fig. 8b 
to f, it can be seen that the correlation between the initial 
compression elastic modulus and the strength is stronger 
than that between thickness and strength. The r (Y, Z) of 
type B1 2.5DWCPs reached a remarkable value of 0.921. 
Although the maximum absolute value of r (X, Z) for five 
types plates is just 0.4464, the correlation between the 
thickness and the initial compression elastic modulus r 
(X, Y) should be paid attentions to. Therefore, the initial 
compression elastic modulus has the potential to link the 
relationship between thickness and strength. In Fig. 8g, it 
is indicated that the dependences between the thickness/
initial compression modulus and the strength are signifi-
cant, which corresponds to the clear classification of the 
five types of 2.5DWCPs in Fig. 8a.

Finally, the initial compression modulus and thick-
ness of specimens are selected as IPs, and the compres-
sion strength is selected as OP, so that the first ANNM 
for predicting compression strength in warp direction is 
established. For convenience of comparison, this model is 
subsequently abbreviated as the Direct Strength Prediction 
Model (DSPM).

The experimental data of one specimen is randomly 
selected for each type of 2.5DWCPs. Therefore, there are 
five experimental data in the test dataset. The remaining 24 
experimental data are used as the training dataset. The pro-
grams written in Python language are applied to build an 
ANNM based on TensorFlow. The number of hidden lay-
ers is five and each layer has 64 neural nodes. The learning 
rate is 0.001. The ReLU [31] is selected as an activation 
function. The biggest advantage of the ReLU is that it can 
address the issue of disappearing gradients and speed up 
the training rate. Under the current neural network struc-
ture, the results of the training process are shown in Fig. 9. 
The Loss and ValLoss denote the loss value of the training 
dataset and validation dataset, respectively. The ratio of 
the validation dataset to the training dataset is 0.2. The 
Mean Square Error (MSE) is selected as the loss function 
to evaluate the performance of the DSPM.
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where Yreal and Ypredict represent experimental data and pre-
dicted results of the model, respectively. n signifies the num-
ber of training dataset or test dataset. It is obvious that Loss 
and ValLoss converge quickly during the training process 
as shown in Fig. 9. When the ValLoss does not decrease for 
10 consecutive steps, the iteration will be terminated. The 
number of iterations is 132. The total training time of the 
DSPM is 6.2s.

(6)
MSE =

n∑
i=1

�
Yreal − Ypredict

�2

n

To show data flow process of the DSPM, the details on 
data preparation, data structure construction, data process-
ing, the set of initiation and callback options for ANNM 
are elaborated in Fig. 10. The IPs can be found in Figs. 2b 
and 5a, and the OPs can be found in Fig. 5b. Finally, the 
compressive strengths for randomly selected specimens are 
predicted by the trained model.

3.3 � Stress–Strain Curve Prediction Model

The model established in Sect. 3.2 directly utilizes the initial 
compression modulus and thickness of specimens to predict 
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the compression strength of 2.5DWCPs. This section will 
introduce another prediction model. Except the initial com-
pression modulus and the thickness of the specimen, the 
strains obtained from strain gauges are added as the third 
IPs. What’s more, the OPs also change from compression 
strength to stresses. Until now, the second ANNM to predict 
stress–strain curve has been established.

The stress–strain curves predicted are utilized to indi-
rectly obtain compression strength and failure strain in 
warp direction. The model is subsequently abbreviated as 
the Indirect Strength Prediction Model (ISPM). As pre-
sented in Fig. 4, the data points of the stress–strain curve 
are abundant. Compared with the DSPM predicting the 
compression strength directly, the ISPM predicting the 
compression strength indirectly can obtain a large number 
of training dataset from experimental data. The predic-
tion accuracy of the ISPM based on ANNM is expected to 
improve significantly.

As shown in Fig. 4, the load drop phases of A0, B0 and 
B1 in Fig. 4a, c and d are gentle (Gradual Drop Mode, 
GDM), while the load drop phases of A1 and C in Fig. 4b 

and e are sudden (Sudden Drop Mode, SDM). In the pro-
cess of training ANNMs, it is found that the sudden drop 
of stress near the failure strain may seriously interfere with 
the results predicted by ANNM. To illustrate the influ-
ences of GDM and SDM on prediction of stress–strain 
curves, the differences between two modes can be clearly 
demonstrated in Fig. 11.

There are two main reasons for this phenomenon: (1) 
The ultimate stress and initial stiffness of the same type 
2.5DWCPs are similar. However, the failure strain is some-
times different. In the ISPM, the specimens with large fail-
ure strain fail at an earlier stage, and tracking accuracy 
of the elastic modulus nonlinear effect is also reduced. 
This results in a significant underestimation of the failure 
strength. However, it is inevitable in randomly initializing 
the training dataset and test dataset; (2) The stress gradient 
near the ultimate stress is discontinuous. It is difficult for 
ANNM to converge and capture gradient drop accurately. 
In addition, the issue of overfitting is easy to occur in data 
regression.

The SDM obviously makes the ISPM obtain wrong 
failure point, which results in large errors between pre-
dictions and original compression strength/failure strains. 
To address these issues, a new State Variable (SV) is intro-
duced as OPs. The specific definition of SV is presented 
in Eq. (7).

where ε denotes the strain vector and max(ε) denotes failure 
strain corresponding to maximum stress. At the same time, 
the original stress vector is corrected by SV. The modified 
stress data can be obtained by Eq. (8).

where σReal and σModify signify compression stresses before 
and after treatment.

(7)SV =

{
1, � ≤ max (�)

0, � > max (�)

(8)�Modify = SV × �Real
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Fig. 9   Training results of the DSPM in warp direction
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The stress–strain curve of A0–1–3 modified by SV is 
shown in Fig. 12. The modified stress–strain curve directly 
abandons the data points of the load drop phase. However, 
the most concerned maximum stress and failure strain in 
engineering analysis are preserved more precisely. The 
modified stress–strain curve significantly reduces the train-
ing difficulty of the ANNM. In addition, the demand for 
the size of training data structure is greatly decreased.

There are 29 stress–strain curves of compression exper-
iments in warp direction. The nine stress–strain curves 
(1, 1, 1, 3, 3) are randomly selected as test dataset in 
2.5DWCPs (A0, A1, B0, B1, C), which means that the 
remaining 20 groups of experimental data are divided into 
training dataset. The programs are written in Python based 
on TensorFlow.

The learning rate is 0.001. The ratio of the validation 
dataset to the training dataset is 0.2. When the ValLoss 

does not decrease for 15 consecutive steps, the iteration 
will be terminated. The commonly used ReLU is selected 
as activation function. To improve the computational effi-
ciency of the modified ISPM and prevent the gradient from 
vanishing and exploding, it is necessary to normalize the 
IPs and OPs as Eq. (9).

where max/min represent the maximum/minimum value of 
IPs and OPs, which normalizes the raw data to [0, 1].

Since the training data size of the modified ISPM is 
much larger than that of the DSPM, it is necessary to com-
plete the convergence analysis of the training model. The 
16 neural network models with different scales are pre-
pared for training, which has a combination of 3/6/9/12 
hidden layers and 16/32/64/128 neural nodes in each layer. 
The convergence analysis of the modified ISPM is shown 
in Fig. 13.

It is obvious that the loss function MSE of model basi-
cally shows a gradually decreasing trend with the number 
of training parameters increasing. The MSE value of the 
smallest scale model is 0.0208 (3 hidden layers, 16 neural 
nodes in each layer, 914 parameters in total). The MSE 
value of the largest scale model is 0.0040 (12 hidden lay-
ers, 128 neural nodes in each layer, 198,914 parameters 
in total).

In order to better explain the discrepancy between the 
training results of different scale models, the loss function 
MSEs of the training dataset converges with the number of 
iterations are given in Fig. 14a. What’s more, the predicted 
stress–strain curves of B1–1–6 in different scaled models 
are compared with the experimental data in Fig. 14b. The 
following conclusions can be drawn from observation: (1) 
The model (128 × 12), which has 128 neural nodes and 
12 hidden layers, possesses the best convergence rate and 
prediction results; (2) The 64 × 9 model has no ability to 
capture the stress–strain curve after reaching the first stress 
peak. Third, near the first stress peak, the stress predictions 
of the 32 × 6 and 16 × 3 models are completely distorted. 
This can be attributed to the limited characterization of 
model parameters and the overfitting problems caused by 
too many iterations.

Finally, the number of hidden layers is 12 and each layer 
has 128 neural nodes. The results of stress–strain curves 
predicted by the modified ISPM are shown in Fig. 15. Com-
pared with the DSPM, the modified ISPM utilizes a more 
effective training dataset from compression experiments. 
Accordingly, the structure of the network in the ISPM is 
relatively complex, which is beneficial to build the nonlinear 

(9)
IP =

IP −min (IP)

max (IP) −min (IP)
∈ [0, 1]

OP =
OP −min (OP)

max (OP) −min (OP)
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relationship between stresses and strains. However, the con-
vergence rates of TrainLoss and ValLoss are relatively slow 
during the training process. The number of iterations is 268. 
The total training time of the modified ISPM is 231s.

To show the data flow process of the modified ISPM, 
the details on data preparation, data structure construction, 
data processing, the set of initiation and callback options 
for ANNM are elaborated in Fig. 16. The IPs can be found 
from Figs. 2b, 5a and strain values in Fig. 4a ~ e, and the 
OPs can be found from stress values in Fig. 4a ~ e and modi-
fied stress-coordinates in Fig. 12. Then, the corresponding 
stresses for the randomly selected experimental strains are 
predicted by trained model. Finally, the stress–strain curves 
are obtained by plotting points of the test dataset. In addi-
tion, the maximum stress (compression strength) and failure 
strain can also be extracted.

Fig. 13   The convergence analy-
sis of the modified ISPM

(1) The number of parameters (2) Loss function MSE

(1) Loss-Epoch curves (2) Stress-Strain curves 
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4 � Results and Discussion

4.1 � The Results Predicted by the DSPM

The first ANNM selects the initial compression modulus 
and thickness of specimen as IPs, which directly outputs 
the compression strength in warp direction for five differ-
ent kinds of 2.5DWCPs. After the training model, five test 
dataset are predicted by using the DSPM. The predicted 
results are shown in Table 2. The minimum percentage 
error between predictions and experimental strength is 
about 2.1%, and the maximum percentage error is about 
12.4%. The results preliminarily validate the feasibility of 
ANNM to predict the compression strength of 2.5DWCPs. 
In theory, the prediction accuracy of the model can be fur-
ther improved by expanding the size of the training data-
set. However, the increase of specimens directly leads to 
an increase in the experimental cost. Therefore, although 
the DSPM is enough simple and direct to predict the com-
pression strength, the prediction accuracy and cost–benefit 
ratio may not satisfy the actual demand for investigators. 
However, only the thickness and the initial compression 
elastic modulus are required for IPs, which means that it is 
non-destructive for strength prediction. It is more suitable 
for engineering application.

4.2 � The Results Predicted by the ISPM

The second ANNM selects the initial compression elastic 
module, thickness and strains as IPs, which outputs stresses 
and indirectly calculates the compression strength in warp 
direction for five different 2.5DWCPs. After the training 
model, 9 test dataset are predicted using the modified ISPM. 
The predicted results are shown in Fig. 17. The results show 
that the predicted stress–strain curves are in good agreement 
with the experimental stress–strain curves.

Compared with the results in Fig. 11, the modification on 
real stresses which is demonstrated in Fig. 12 can signifi-
cantly improve the accuracy of the predicted stress–strain 
curves with the sudden drop of stress. Furthermore, the 
characteristics of the ISPM are highlighted, which mainly 
focuses on compression strength and failure strain.

From the experimental data shown in Fig. 4, it can be 
concluded that the 2.5DWCPs A1 and C fail immediately 
when the stress–strain curves reach the maximum stress. 
After the modified stress–strain curve is substituted into the 
ANNM for training, the stress–strain curve predicted by 
the modified ISPM is in good agreement with experimental 
data. By contrast, the 2.5DWCPs A0, B0 and B1 fail gradu-
ally when the stress–strain curves reach the failure strain. 
Although the modified ISPM has no ability to predict the 
load drop phase of the real stress–strain curve, the predicted 
stress–strain curve accurately contains the maximum stress 
σmax and failure strain εmax. The characteristics of the modi-
fied ISPM are more in line with the actual requirements of 
engineering practice.

Based on the stress–strain curves predicted by the modi-
fied ISPM, the compression strength in warp direction for 
five types of 2.5DWCPs can be indirectly computed by 
maximum stress and geometry dimension of specimens. 
The percentage errors between predicted and experimental 
compression strength/failure strain are presented in Table 3.

The results indicate that the maximum absolute error of 
predicted compression strength in warp direction is 5.623%, 

Fig. 16   Training process of the 
modified ISPM

Table 2   The predicted compression strength in warp direction by the 
DSPM

Specimen ID Real strength/MPa Predicted 
strength/MPa

Error/%

A0–1–3 134.103 150.670 12.354
A1–1–2 170.573 150.239 − 11.921
B0–1–2 217.321 221.878 2.097
B1–1–4 183.670 202.018 9.990
C–1–3 277.949 308.774 11.090



3197Fibers and Polymers (2024) 25:3185–3199	

and the maximum absolute error of predicted failure strain 
is 13.588%. From the stress–strain curves of B0 shown 
in Fig. 4c, the compression strength and failure strain of 
B0–1–1 are significantly different from those of the other 
four specimens. Therefore, it can be considered that the 
randomness of the training dataset and test dataset lead to 
undesired errors in the prediction of the failure strain. How-
ever, combined with the correlation analysis of the initial 
compression elastic modulus and compression strength in 
group B0 from Fig. 8, the input compression elastic modu-
lus increases the ultimate stress and further improves the 
prediction accuracy of compression strength for B0–1–1. 
These results will verify the correlation between IPs and 
OPs of the ANNM, which also validate the performance of 
the modified ISPM.

To sum up, the modified ISPM has good performance 
after training with only 20 experimental data. The model 
can simultaneously obtain the compression strength and fail-
ure strain in warp direction, and it also has good prediction 
accuracy. What’s more, the number of specimens and the 
dispersion of experimental data are also important factors 
affecting the results of the modified ISPM. Therefore, in the 
case of better stability of experimental data, the number of 
specimens in the training dataset can be further reduced, 
which can decrease the experimental costs.

4.3 � Comparison Analysis Between DSPM and ISPM

The efficiency of the building model can be clearly demon-
strated by comparing the training results of the DSPM and 
ISPM shown in Figs. 9 and 15. It can be found that the IPs 
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Fig. 17   The results of stress–strain curves predicted by the modified ISPM
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and OPs of the DSPM are more straightforward than those 
of the ISPM. Therefore, the construction and training of the 
DSPM are easier and the convergence rate is relatively faster.

By comparing the results predicted by the original ISPM 
and modified ISPM in Figs. 11 and 17, the modified model 
has three significant advantages over the original model. 
(1) The introduced SV essentially reduces the size of the 
training dataset because the modified stress is zero when 
the strain reaches the failure strain. The experimental data 
points after the failure of 2.5DWCPs can be appropriately 
deleted; (2) The SV enables an accurate capture of ultimate 
stress and failure strain, which highlights the characteristics 
of experimental data and further reduces the requirement 
for the size of the training dataset. It is expected to reduce 
experimental costs; (3) The SV can effectively improve the 
prediction accuracy of failure points in stress–strain curve 
with sudden stress drop, which prevent the underestimation 
of ultimate stress by the original ISPM.

By comparing the results predicted by the DSPM and 
the modified ISPM in Tables 2 and 3, the construction of 
the modified ISPM is relatively complex and the training 
process of the modified ISPM is more time-consuming than 
the DSPM. However, the modified ISPM can predict the 
compression strength and failure strain in the warp direc-
tion, and the predicted results are in good agreement with 
experimental data. Compared with the issues of parameters 
dependence, complex modeling and analysis in FEMs, the 
modified ISPM can efficiently and accurately predict com-
pression strength and stress–strain curve.

5 � Conclusions

In this paper, 29 quasi-static compression experiment 
data in warp direction of 2.5DWCPs are utilized to con-
struct two different ANNMs. The first DSPM inputs the 
initial compression elastic modules and thickness, and 
outputs compression strength in warp direction. The 

second modified ISPM inputs the initial elastic compres-
sion modules, thickness and strains, and outputs stresses 
and SV. Two proposed ANNMs are validated by using 
the test dataset. By analyzing the predicted strength and 
stress–strain curves of five types of 2.5DWCPs, the main 
observations and conclusions are summarized as follows:

(1)	 The IPs and OPs are simple and direct in the DSPM, 
which is easy to be constructed and trained. The predic-
tion errors of compression strength range from 2.097 to 
12.354%. Although the DSPM is less accurate than the 
ISPM, it is still proposed to predict mechanical proper-
ties when few experimental data are prepared.

(2)	 To prevent the underestimation of maximum stress 
by the original ISPM, the simplified data processing 
method is firstly proposed. The modified ISPM with SV 
obviously reduces data structure and time cost, which 
also improves the accuracy of predicting failure point 
in the stress–strain curve.

(3)	 The modified ISPM can obtain more training data 
from experiments than the DSPM. Thus, the predicted 
stress–strain curve is highly consistent with the exper-
imental data. The prediction errors of compression 
strength range from 1.983 to 5.623%. Therefore, the 
modified ISPM has the potential to predict the stress–
strain curves and compression strength of 2.5DWCPs 
by replacing the complex modeling and analysis of 
FEMs.
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Table 3   The percentage errors 
between experimental data and 
prediction of the modified ISPM

Specimen ID Real strength/MPa Predicted 
strength/
MPa

Absolute error/% Real εmax Predict εmax Error/%

A0–1–2 123.050 118.905 3.369 0.00471 0.00491 4.246
A1–1–3 182.884 172.712 5.562 0.01963 0.01992 1.148
B0–1–1 236.334 229.163 3.038 0.00758 0.00655 13.588
B1–1–4 183.670 173.342 5.623 0.01045 0.01008 3.541
B1–1–6 187.662 183.941 1.983 0.01048 0.01005 4.103
B1–1–8 184.958 179.449 2.979 0.01057 0.01025 3.027
C–1–3 277.949 283.618 2.040 0.00688 0.00759 10.320
C–1–6 305.601 292.618 4.249 0.00748 0.00701 6.283
C–1–7 281.903 295.131 4.692 0.00717 0.00696 2.929
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