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The Diakoptics Solution of Eigenvalue
Problems in Large Scale Network
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ABSTRACT  The concept of diakoptics is to analyze a large scale network by partitioning it in to a number of
smaller subnetworks. The theory has been developed from the concepts of open path and closed path through the
conventional graph theoretic approach. In this paper, the formulation of characteristic equation of the eigenvalues of
the network is represented by the aplication of diakoptics to the simulated network model of any linear large scale
network. Furthermore, diakoptics coupled with appropriately proposed algorithm for the iterative solution of the cha-

acteristic equation results in considerable computational efficiency as compared with nondiakoptical methods.

I. Introduction

In linear network analysis, determination of
complete solution comprising the general solution
De-
termination of general solution is identifiable
with the solution of generalized eigenvalue pro-

and steady state solution is often desirable.
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blem, the eigenvalues being poles of the transfer
functionV),

Solution to the generalized eigenvalue pro-
blem of a large scaie nature involves, inversion
of matrix. The complexity and magnitude of the
problem is directly function of matrix order and
its sparsity '
operations needed and computation time increase

Computer storage, number of

with the order of matrix. The smaller the matrix
is, the lesser effort would be.

Diakoptics is a method for the analysis of
=7 The method involves

large scale system

conversion of eigenvalue problem in to equivalent
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electrical network, divides the large scale simu-
lated network in to smaller networks, finds the
solution models for the subnetworks, and finally
obtains the solution to the original network,
through a interconnected model. For solving
large scale simulated equivalent networks, dia-
koptics substitutes the inversion of one large
matrix by inversions of ‘S’ smaller subnetwork
matrices plus one matrix of the intersection net-
work for the tie line’s parameter determination.

Another important technique employed by
Brameller, for solution of the eigenvalue problem,
is hybrid combination of diakoptics and esca-
lator method®. The escalator method is a well
established one, which consists of systematic
way of escalating a 2xX2 matrix up to any desired
order in steps of one row and a column at a time.

The results of the diakoptics method is
identical to one that would have been obtained
if the network had been solved as an interconnect-
ed one. The objective of tearing method is to
reduce the storage requirements and computation
time.

To accomplish this objectives, this paper
considered as following terms:

1) Based on an open path and a seg theory
we shall establish the new mathematical founda-
tion of Kron’s orthogonal networks and dia-
koptics through conventional linear graph theory.

2) A new rigorous mathematical foundation
for Kron’s piecewise solution of large scale eigen-
value problems will be established, the derivation
is also based on Kron’s orthogonal network
theory.

3) Derive the frequency equation (charac-
teristic equation), The roots of the equation
are the eigenvalues of the original large-scale
system and determine all of the exact eigenvalues
and eigenvectors. The escalator method related
to Kron’s piecewise solution of large scale eigen-
value problems will be discussed.

Thus the method of tearing reduces the com-
puter storage, calculation time and improves
accuracy, result in the more economical solution
of large and complicated problems which can
not be conveniently solved by any standard
method.
apparent when the order of system to be simulated

The advantages of tearing become

greatly exceeds that defining the capacity of the
largest digital computer available,

II. Orthogonal Network

The topological properties of the linear
graphs can be explored with the concepts of
open path and closed path. For a connected
graph of b edges and n nodes, there are (n-1)
independent open paths and (b-n+1) closed paths.
In electrical networks, the constitutive equations
are Ohm’s law and various equations for the
components, and the equilibrium equations are
obtained from Kirchhoff’s current law and voltage
law,

Using the standard edge symbols are shown in

Fig. 1.

Fig 1 Standard edge and its linear graph representation.

Each edge is associated with E and i, and V and J.
The Ohm’s law equation can be written in the
impedance form as

V=E+te=2Z (I+i) (1)
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and in the admittance form as

J=I+i=Y(E+te) (2)

The vectors J and V are currents through and vol-
tages. across the edges of a graph. The vector I is
composed of currents through the open paths
due to injected currents; they are called the
open path currents. The vector E contains the
sums of voltage drops across the edges in the
open paths. The vector i contains the closed
path, or loop currents, the vector e is composed
of the sums of the voltage drops in the closed

paths.

It is well known that for a connected graph K
of n nodes and b edges, KCL is given by

Ad =0 (3}
and KVL by
CE=0 {4)

where A, is the basic seg matrix and Ccis a basic
The superscript t denotes the
Since the nonsingular

circuit matrix.
transpose of a matrix.
transformation C relates the edges to the open
paths and closed paths, we can use C to define
a new set of currents [I,:ic] which is in one-
to-one correspondence to the currents through
the immittance J by

o ¢ I,
[(J]=[co: cc] { lc] (5)
or

REMIAIRE

Ic

where lo and ic are called the open path current
vector and the closed path current vector respec-
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tively. Normally, the vector 1 is given for a net-
work so that lo is known. The closed path cur-
rent vector ic is unknown, Also, since each row
of C¢ and C¢ represents an open path or closed
path, the premultiplication of the V vector by
C’will give the algebraic sums of immittance
voltages in this paths,

NEAIA R o
or
o Cc .
VolALiAY |

C

where YV is the open path vector and e¢ is the
closed path voltage vector,
when the constitutive equation is given as

J=YV 7

we have the orthogonal Y network equation,

as

I A Eot+e
{:9. ]nl °} (Y] [ A% A% "0}
| S Ac €c
- 0[.?'.99.“ .Yp.c....} [ .E.qf.?_qv] (8)
ctYe Yeo €c
where
Y00=Ao YAlo
Yoc=Ao YA!c
Yeo=Ac YAS
ch=Ac YAtc

Using the C and A transformations, the non-
singular transformations between -the different
orthogonal networks composed of the same set
of standard branches can be constructed.
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Let K; and K, denote the graphs of two
orthogonal networks. The transformations can be

written as
loll)
ger-red | 9
["mt}e"m} =|:Cit] [V‘”] (10
- €c -

5] ~tna [] a

. Eigenvalue problems by Diakoptics

A eigenvalue of a n X nsquare matrix A is a
number, A, that satisfies the equation,

(A—A1X=0 13

where X is a column vector and is known as a
eigenvector of matrix A. We shall derive the
eigenvalue problems by means of diakoptics
through the viewpoint of the orthogonal networks.

The orthogonal Y equations for the subdivi-
sions from Eq. (8) is

C

where the subscript a represents subdivision, and
the e¢® and e® are zero due to the nonexistance
of independent voltage sources in the electric
circuit model. From Eq. (14), the open path

currents I{® are found to be

l‘o(S)zY‘oo{S) En(Sl (15)

Where §9 = Cyi'?
and Yoo!¥ = (A —1)

Notice that I{®

rents {®

contains unknown tie line cur-

only, where (,i¥ gives the new

injected currents in the subdivisions due to tearing.
When there is no conpling between the sub-
divisions, Yos¥ has the form of

Yoo(5)=diag(A(”“‘/\l. A(z) —AI TS A(na) "‘/\I)

where diag[-] means diagonal square matrix and
(A"=A1), (A®=21), -, (A'"™—2A1)

are the admittance matrices of the subdivisions.
Eq. (15) is rewritten as

(A -=A1) Eo'® = Cxi'® (16)

Using the similar transformation on the matrix
A® which diagonalized A'™ , we have

A{S) :zx—lA(S)x (17)

where A 'S is the diagonal matrix of eigenvalues
of the subdivisions, A{*’ of the form
A® =diag (A%, A% A% )

X is the modal matrix of the subdivisions, X|®, of
the form

XlrS)
X= X4

Xn(SD

Applying this transformation to the matrix (A'® —
I)results in the expression
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XA —ADx=(A™"-AD 19

The inverse of (A'®—I) is found to be

(A®—=A1)'=XA®—2aD " X! 19
where
(ArS'y Al) ~1
. 1 1 1
~diag | YA RV S A,;S“—T}

The solution of Eq. (16) may be written as fol-
lows, using Eq. (19) for the inverse of (A'® —AI)

Ed¥ = (A®—21) " i
jZOOISr IdS: (20)
Zools) =X( /\(S) - /\I) - X

where

and 1¢%=Cyi®™
The network equation for the set of tie line is

i!') o Y(h E-h (21>

when Y™
lines.
From Eqgs. (20) and (21), the orthogonal Y equa-
tion is

is the admittance matrix of the tie

s t
[ os] - S[ Zoo: ] S[ _(_?!si_[,t,’,] 99
E[t; t EZm | t i:t; s
where CZ" =[Y'Y] '  is the impedance matrix

of the tie lines.

Let the all open network and the tie lines be
considered as a disconnected network, then graph
Ks and K: form the graph K, of this disconnected
network,
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Since Ks is all open network and Kt is a primi-
tive network, then the transformation matrix
A, of Eq. (11) is a unit matrix. Let the tie lines
and the all open network be interconnected.

In the process of interconnection, each edge
of K:i creates a fundamental closed path, which
consists of exactly three edges, one from K, and.
two from Ks. Let the linear graph of the inter-
connected network be denoted by K.. '1he open
paths of K; and Ks are identicial and the closed
paths are the fundamental closed paths formed by
restoring tie lines. Thus

E{=E® (23
where EgY is the open path voltage vector of K.

Let the open path and closed path currents of K,
are denoted by I{¥ and /Y respectively,
the tie line currents ‘¥ are no longer included in
the open path currents i§” of K, and the tie line
currents 'Y becomes the link currents il”ofK,.
We have

(24

From Eq. (13), the matrix of linear transformation
T,. is given by

Ti=A,;C:=C, (25)
where
0 c
C, T‘ UCT( !
Loy

here T and L stand for the Ks tree branches and
the K, links respectively, and U is a unit matrix.

The path voltage of Eq. (12) is
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i /el ol sl ek ;fa] s

S t
of E" 1 _of U 0] o[ Eo?] o
cle=0 ] clce 'yl tl E®

The inverse of Eq. (26) is

NI T

s[E¢® ] _s[ U 01 of EO b

where EY

lines. The path current vector of Eq. (11) is

is the voltage vector across the tie

") C
s| L ] s| U Creq oo K" 7
i el o Ul el |

comparing [{¥ obtained from Egs. (28) and (20),

(4]

since the tie line currents i are equal to the

link currentd jl” and the open path currents

Is” = 0, it is seen that the matrix Ci=Crxc.
Substituting Eqs. (27) and (28) into Eq. (22),
we obtain

o C
s| U 0] [ Eo'
tl ¢t vl |l ol
ZsS t o C
s| Zoo” © sf U €] of O
tl EZ"’] tl o U} el } 29

From Eq. (29), the equation of solution for the
interconnected network K, is

o] Eg" )
el 07
S t s t 0 c
_| UO] [ foo” ] [ U ] [_Q]
Led ol | zv 1 Lotulliv]
(o] C
- 0[ Zoo' i Zow"Cx J of ‘.Q,_]
el CxZos®™ Z"M+C\Zod¥C\ el v
(30
From Eq. (30), we obtain
(Z'% +C{ZLos® Cx )i =0 31

Substituting Eq. (20) into Eq. (31), we obtain
(ZO4Ce- X (A —AD ' X' Cy)4™ =0 32

and

Ed" = Zos® Ci'™ 83

'which is the same as Eq. (20) since E(%=E{®

This is the basic relation of the present method of
calculating the open path voltages (eigenvectors).
Notice that, substitution of i'Y vector into Eq.
(33) gives the open path voltages (eigenvectors)
of the original system.

The general theory of simultaneous algebraic
equations show that there is a non-trivial solu-

tion if and only if, the matrix (ZY+C¢X (A*®

—1)'X'Cx) of Eq. (32) is singular, that is

det (Z+C'X(A®—1)'X"Cx)=0 (9

The roots of Eq. (34) are the eigenvalues of the
original system. The above equation is the fre-
quency equation (characteristic equation) of
Eq. (32). The important point to observe is that
the frequency equation involves the solution of
only the ntxnt matrix, where n. represents the
total number of tie lines.

But the determinant of Eq. (34) is not wholly
arithmetic, its evaluation will involve of the order
of n, calculations. The general solution of the
problem in this form is clearly impracticable.

Il — 1. Solution of Frequency Equation

There are a number of ways of solving Eq.
(34). One convenient way is by interconnecting
one tie line at a time, that is, C¢*X andiX ' Ccare
single row and column vectors and Z‘" is a scalar.
By connecting one tie line at a time only the
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www.dbpia.co.kr



WEEE B RR L 8T-6 Vol. 12 No. 3

inversion of a 1X1 matrix is required. The fre-
quency equation (34) for the interconnection of
the K.x tie line can be expanded and conveniently
solved by the same technique used in the escalator
method as described in reference'®.

From the solution of eigenvalues, the cor-
responding eigenvectors of the interconnected
system may be evaluated as follows. From Eq.
(32) and (33), substituting Zoes® from Eq. (23),
we have

Ed" =X (4'9—A1) "X ' Cyi® 139

From Eq. (34), the coefficient of ‘¥
(32) is zero. Thus 'Y can be any scalar, it may

in Eq.
be considered as a common scaling factor of the

eigenvector E'® and can be chosen to be unity.
Therefore

E¢” =X (A'9 — A1) "X Cx 36

For orthonormal eigenvectors

x—l —_ xt
Therefore
Eé" =X (A® —AI) ' X* Ck (37)

Based on the escalator method, it is then neces-
sary to invert the modal matrix X of the subdivi-
sions for each interconnection. This technique is
ingppropriate because the inversion of a large
matrix requires an excessive computation time
and may induce numerical inaccuracy 2

To overcome the problems cited above for the
real matrix A, we shall apply the theory to a
square matrix.

The following steps taken in order facilitate the

solution of eigenvalues in a systematic manner.
(1) Tear the given system into a number of
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subdivisions and the lines.

(2) Establish the connection matrix Ck.

(3) Calculate eigenvalues and corresponding
eigenvectors for each subdivisions by any method
and establish the corresponding modal matrix
X from the eigenvectors of subdivisions.

(4) Interconnect one tie line at a time to the
models to form ultimately an interconnected
network which has exactly the same eigenvalues
as the original system.

(5) For the interconnection of the Kin tie
line:

(a) Calculate D=X'Cx=Cy<X

(b) Solve by Newton’s method the escalator
form of the frequency equation, Eq. (34):

-3 di’ ()
f(/\)“;m +Zc' =0
and
, n di
- f -t

(c) Evaluate the eigenvectors from Eq. (37)

Ei'=X (A" —2a1) 'X'Ck

(d) Establish a new modal matrix from (c):
X :'Xnew
and

A(S) =A new
(e) Repeat step (a) for the next interconnec-

tion.

IV. The result of numerical study

The sample network has been used to analysis
a large scale eigenvalue problem by diakoptics.

www.dbpia.co.kr
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A -1 0 0 -1 E,
-1 3—-12 -1 0 0 E.
0 —1 3—2 -1 0 E,
0 0 —1 4-x —1 E.
-1 0 0 —1 3—a E,s

The equation above defines the eigenvalue pro-

blem and represented diagrammatically in Fig.2.
The removal of the lines and the splitting the
ground node into two nodes yield the torn net-

work

and its graph as shown in Fig.3.

Then the equation of solution, from Eq. (35), is

or

Eés) - (A(l)__l) -1 C(i“)

-1

;\} itm"‘,-boundlry of tearing

1
1L ci"!l d 1

A

\4

N
T

1—A 1—-4 2—4

|
|
)
|
!
1
1
t

1-2

Fig 2 A network and its graph K.

For the second torn subdivision, the eigen-
values and corresponding eigenvectors are

AM=4, =2, =1

and
—.408248 -, 707107
X,=| 0.816469 , X;=| —.0
-, 408248J 0.707106
0.577350
Xs=1{ 0.577350
0.577350

For the first torn subdivision, the eigenvalues
and the corresponding eigenvectors are

A¢=3.168033, As;=1.381966

¥

i
h 13 a

and

0.850651
—. 525731

in
R 1 p 1 ¢
g

a [——-‘
1 f
TR

ie lines

first subdiv

o
a

L gt
.

x______-_--
L)

Ao

) 5

i

1—

0.
0.850651

525731]

. i

it

A 1-4
g

second subdiv

Fig 3 The torn network and its graph.
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Using Egs. (21) and (22), Eq. (23) becomes

E\® —.408248  —.707107 0.577350
E;® 0.816496 0.0 0.577350
Ed¥ | =| 408248 0707106 0577350
E.® 10850651 0.525731
Eq® 1. 525731 0.850651
~AL _
4—A
1 WU
2--A
X [ —
1 A x
...._7.—‘1 DU
3. 161803 A
i 1.381966 A
2 e -
__( —.408248 0.816496 —.408248 | '
| —.707107 0.0 0.707106 0
| 0577350 0577350 0577380 || .
0.850651 —.525731 —iY
0.525731 0.850651 Lfiz‘“
The all open network of Eq. (39) and its
graph Ks together with the tie lines and its graph
Kt are shown in Fig.4.
. i , . . b ¢ d ¢
1 e -
d e
tie lines
i ]
' 1
| |
ab o b
. w
f\ﬂA A
graps K,
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Fig 4 The all open torn network and K,
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It is obvious from Fig.4 that Ci = U. The impe-
dance matrix of the torn network, Eq. (22), is

X(A®—Al) ' X'

The interconnected network and its graph K:
are shown in Fig.5. The transformation matrix

T = C, is obtained from Ki, and

Thus the connection matrix Cyis

12 (2

Bs 0 1

Ba 0 0
Crc=Ck= 4~ 1 0
Bu| —1 0

B 0 -1

The equation of solution for the interconnected
graph K, from Eq. (34), is

0 C
_T[ UC*C} ‘
C=l 0y det (ZW+CiX(A®—A)7'X"'C)=0 W0
a
c
g f
g
Fig 5 The interconnected network and K,
Where
g | 1 ][ 408248 0.707106  0.577350 850651 -~-—.525731]
L1 "L - 408248 --.707107 0.577350 0.525731 — 850651
P —. 408248 —.408248
1
e 0.707106  0.707107
1
T 0.57735  0.37753
1
ERT T .850651  0.525731
7_135156;?&; --.525731 -—. 850651

As mentioned, there are a number of ways of
solving Eq. (40). One convenient way is by inter-
CcX

and X 'Ck are single row and column vectors and

connecting one tie line at a time, that is,

Z "V is a scalar.
Our next step is to interconnect the first
tie line (k=1). Therefore, we calculate
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D=X'C,
—.408248 0.816469 —.408248 ] 0]
—.707107 0.0 0.707106 0
=| 0.577350 0.577350 0.5773%0 . 1
7 0.850851 —.525731 || 1
© 0.525731 0. 850651 0
Then ‘
a7 ] 0.166667 |
ds 0.5
£ | =] 0.333336
d? 0.723607
ds i 0.276393 |
We may write the escalator equation for the net- Then
work after the first interconnection:
166667 .5 . .333336 ar | [ o.125753 ]
f(A) =— : + +
4--2 2—A 1A d’ 1.456885
TI0T 26393 di | = ] 0.0L8585
3.618033— A 1.381966-- A d, 0.377456
We determine its roots by Newton’s method, we ds J —0'021320 J
obtain

Av=1.113387, A,=1.531122, A;=2.415332, A.=3.913728, As=5.026415

The corresponding eigenvectors, arranged in a new
modal matrix, are

—. 623664 —.405695 0.544264 0.374036 -.101624
. 552947 —.190220 —.226053 715805 0.307555
Xnew=| —.419531 0.126285 -.676429 0.280018 --.521613
—.238540  0.375721 --.169430 0.459945 0.749452
------ 269047  0.801320 0.407938 --.240340 —.247637

Our next step is to interconnect the second tie
oine, Therefore, we calculate

—.623664 —.552947 --.419531 --.238540 269047 1

—.405695 —.190220 0.126285 0.375721 0.801320 0

D=Xpew*C, = 0.544264 —.226053 - .676429 --.169430 0.407938 0
0.374036 —.715805 0.280018 0.459945 -. 240340 - @

~. 101624  0.307555 --.521613  0.749452 . 247637 —1

264
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We may write the new escalator equation for the
second interconnected network as

f(n)—_0:125753 | 1.456885 {
1.113387—2 1.531122— A
0.018585 | 0.377556
2.415332—A  3.913728— A
002120
5.026415—A

We determine its roets by Newton’s method, we
obtain

Ar=1.139191, A.=2.381962, A.=2.745893,
A¢=4.613029, As=5.114904

These are the exact eigenvalues of the original
large scale system. The corresponding eigenvec-
tors, arranged in a modal matrix, are calculated
from Eq. (37):

—.510041 0.371746 —.469959
—.510039 —.371745 —.469959
X =1 —.439043 —.601501 0.350540
—.306932  0.000003 0.559034
—.439035 0.601502 0.350543
—.601500 —. 137844
0.601501 —. 137845
—. 371749 0.429374
—. 000001 —.770243
0. 429374

It should be emphasized that in the described
method no approximations are made. The eigen-
values and eigenvectors are exact and all of them
are determined.

V. Conclusions

Mathematically rigorous theory and formula-
tions are developed for large scale eigenvalue
problems,
orthogonal network theory and founded on

Comprehensive derivations based on

Kron’s piecewise solution of large scale eigenvalue
problem are presented. This method could make
available the computational advantage presently
accessible in diakoptical analysis of symmetric.
matrix ease, namely the substitution of inversion
of a single large scale matrix, by inversion of (S+1)

smaller matrices. = Considerable computational

ease and efficiency is proved through sample net-
work for study of eigenvalue problem associated
with the general solution of large scale network,
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