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ABSTRACT Seismic waves are attenuated by losses of energy as they propagate through the earth. One way to
model this numerically is to make the velocity a complex number, the real part giving the phase velocity and the
imaginary part the attenuation. This models wave propagation in a medium for which the logarithmic decrement is
independent of frequency ( attenuation coefficient is proportional to frequncy). The aim is to modify forward and in-
verse numerical modeling so that attenuation can be specified as a function of position.

plied by the logarithmic decrement. However,
[. INTRODUCTION it is not enough to simply use the full acoustic
Seismic wave attenuation can be incorporated wave equation and make the velocity a complex

in numerical forward and inverse modeling by number. Some plane wave components would

allowing the velocity to be a complex number.(?’ be attenuated, others amplified. One approach

The real part of the velocity is the phase velocity, is to separate the waves into upgoing and down-

and the imaginary part is the phase velocity multi- going components and propagate them so that

their amplitudes decay. In this report an one-way
equation with attenuation is investigated. It is

* o KB BTN TR based on Gazdag’s method (1981) and the algor-
Chonbuk National University Chondu, 520. Korea. ithm can be used for time-reversed depth migra-
RSCEY 8729 (12 1987, 6. 16) tion, (2.3
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An algorithm that includes attenuation in
a way that is fairly realistic may have some use in
modeling shot gathers or CDP profiles, or for
undoing the effects in a depth migration program.
Additionally, it may have some numerical applica-
tions. A border of attenuating material around
a snapshot might conveniently reduce the wrap-
around effects that are a part of the Fourier
method.

For many earth materials the logarithmic
decrement, or quality factor Q, is a constant
independent of frequency, but not for all. A
report on this topic has been written by Purnell
(1983) in which measurements of Q for some
physical modeling materials are given.'?)

For plane waves propagating in a homogene-
ous acoustic medium, the amplitude is given by

P (x, 1) -Poetixm

'Po(‘,lk‘x ct (1)

where w is the angular frequency, k is the wave-
number, and c is the phase velocity.

Attenuation may be introduced mathematical-
ly by allowing the velocity ¢ to be complex,
c=c,tic, where ¢, is the phase velocity and c.
is c¢; multiplied by the logarithmic decrement.
Then the amplitude of the plane waves propagat-
ing with attenuation can be expressed as the
following,

P (X, 1) _TPOCikwx—wq +iC2 1

ikiX -Cit) +kCpt
=Poe ! 2

T AT (

=

where e°2*' is the attenuation factor provided
c. is negative.

A snapshot of the wave described by equation
(2) at a = 0 is given by Poe'™
(wavelength = 27 /k) constant amplitude dis-

X

, a single frequency
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turbance. At time t the wave has travelled a
distance c,t. For material with constant Q, the
amplitude is assumed to decay exponentially
proportional to the number of wavelengths travel-
led. Hence at time t the amplitude is Pge 2'® 'k %7

where v is the logarithmic decrement, a
constant independent of k. By comparison with
equation (2), it can be seen that c,=—e¢,/2n
Successive snapshots of the wave described by
equation (2) show a constant wavelength dis-
turbance advancing with velocity ¢, and decaying
in amplitude by the factor e * for every wave-
length of distance travelled.

The quality factor Q is related to the logar-
ithmic decrement by Q=nx/<  Q is physically
a measure of the peak energy in a cycle to the
energy dissipated in a cycle. For rocks Q is typi-
cally in the rangee 10 to 500.

. MATHEMATICAL BACKGROUND

Let P(x,y) be the two-dimensional pressure
field (real values). The digitized values denoted
by Pas (@=0,N-1; 8= 0 /N-1)can be Fourier
transformed to give the complex coefficients
C+ .35 The relationships are,

NN
C*/.o' l/N2 Z Z }Ja‘/5 o Lav+se N
a0 Ao

and

-1

N
Pas YZ:‘) aZ:o Cy o 0'197+BO1TN (3)

A continuous complex valued signal Z(x,y)
can be defined from the coefficients Cy o by the
following summation

N2
7 (x. y) 2’5/ é’cxa plUTXreMIZI A ()
~ Y=—N/2 O:=0
where L=NAX and 5 means 2. with the first and
last terms given a weight of 1/2. The kev
PIoperty of Z(x,y) is that
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P (x, y) =Real (Z(z, y)).

The imaginary part of Z( x, y)is called the Hilbert
transform of P(x,y).

The terms in equation (4) represent single-
frequency plane waves. For example, the term
ellmx+onin/L g constant when (yx+5y)is cons-
tant. This occurs along lines in the x,y plane
which make an angle # with the x axis, where

tan g=y/¢& (Figure 1).

e=0 X=const/a a=N--1

wavetront at time t

D

=const /&
y wavefront at time

(x y) t+ At

Ax=cy At sing
Ay=c, At cosf
X+ dy=coss t

FIGURE 1 Geometric relationships for plane wave propagation.
AB shows the location at time t of a plane wave
component, i. e. the line along which yx+dy=
const. DC shows its location at time t+ At
The distance travelled is ¢,2At and the direction
is down if Ay>0. The pressure P(x,y,t+ At)
is equal to the pressure P(x—Ax,y—Ay,t)
multiplied by the attenuation factor exp( — < (¢,
At)/A).

The wavelength  is a distance perpendicular

to the lines of constant phase such that ¢ !("+9% 27 /L
returns to the same value when x and y are

increased by Asin ¢ and A cos 4, respectively, That

is,

(yAsin@ +&Acos@) 2 n/L=2 7. {5)

Substituting for sin ¢ and cos § in terms of ¥ and
0 and solving for Agives

A=L/ V&7, (6)

The pressure at point (x,y) at time t+At
will be equal to the pressure at point (x—Ax, y—
Avy)at time t multiplied by an attenuation factor,
where

Ax=c,Atsing=c At ¥/ Y/ (y* 4 6%
Ay=c,Atcosf=c; Ot 8/ (FEFa%)  (7)

The attenuation factor is given by e "Veat/A
where <7 is the logarithmic decrement and A is the
wavelength. Hence

Zx,y, trOot)=2Z x4, y—Ay, t)
e ~Veat A (8)
Substituting for Ax, Ay and A as defined by equa-
tion (6) and (7) in equation (4), we obtain

N2

N2
Z (x,y, ti-At)= é’ ﬁ’CV,a
Y=~N/2 &=0

-
e —1C1-1T 2m ALYV ¥ +OR) 2L

{ 2 L.
t" YX+O¥ 2 /L (9)

Sincesvyis positive in this summation, each plane-

wave component moves so that 2\ y is positive,
because by equation (7)

Ay =i D8/ (i 5?) (10)

Thus all the plane waves move downwards. Let-
ting At be very small and expanding the expo-
nential,

Z(x, y, ttAt) =2 vy, t)

—c; (117 /2 7) &t i“/]z’ f‘.

Y=-N/2  d=0

'Cxa(i /(727+ 82))27I/L'em’x*°‘y' 2L 1
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This can be written,

2y, tiat)=2(x, v 1) -catD(x, y) 12

where c is the complex velocity

c-c, (1 -i7/2x)

and

N 2 N2 ————
D(x, y) 772;/2 ;:0/ Cyros v (y*6%)122/L

. Oitﬂﬂ)‘yt 9r L

If <7 =() so that there is no attenuation and ¢
is real number, then the real part of equation (12)
is identical to the algorithm used by chung et al
(1982) for depth migration.'6! It gives the snap-
shots Z(x,y)at time t+<t in terms of the snapshot
at time t and an increment which is the product
of c(x,y) and D(x,y). The function D(x,y) can be
computed by Fourier transforms. The 2-D Fourier
transform of P(x,y)gives the coefficientsC 4; these
are multiplied by filter coefficients; and the
2-D inverse Fourier transform gives D(x,y).

If <7+ 0, the complex equation (12) can be

written in the form of a real equation,

Note that the real and imaginary parts of D
(x,y), from the definition in equation (13), form
a Hilbert transform pair. Letting

D(x,v) :D, iiD,

equation (12) can be written

P, y,t-at) «P(x, v t) (c,;at)D,

(e, V/2x i) D, (149

Equation (14) shows that the attenuation of the

wave is caused by adding to the increment ( ¢; At) Dy
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(which is the increment in the absence of attenua-
tion) an additional increment (¢, V/2zAt)D,
which is proportional to the Hilbert transform
of D,.

In the examples shown below, the algorithm
used implemented equation (14).

[, ANALYSIS OF NUMERICAL METHOD

The numerical algorithm for the propagation
of a plane wave travelling forward only can

be written
}) ot }) -nt d 3
e e e i () ,,,p._ (L))
21 dx
where c=¢C, tCat

p? . pressure at time t At

p 2" I pressure at time t At

At Ctime interval (sampling rate)

An exact solution of equation (15) can be found
in the form a single frequency wave travelling with
velocity v and with an attenuation coefficient
a. The problem is to find how v and aare related
to ¢, and c; . Let the exact solution be written

P e ®{coskx vt) isink (x vt)) (16

When we substitute eqution (16) into equation
(15) and solve for c, and c, as a function of v and

a, we get
sinkv At
¢y =———— chaAt
kat
and
coskvAt
C,=-—+——— shadrt 1
! kAt @ 7

Where c, :phase velocity
¢, :imaginary part of velocity
a : attenuation constant in analytic

solution
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FIGURE 2 Plots for V vs. ¢; and a vs. ¢: Velocity v is
almost constant and a linearly increases along
the c;: for ¢,=5000 ft/sec, At= 1msec, and f=
50Hz.

k:wavenumber (= 2 zf/c)
f:frequency
ch:hyperbolic ocsine function

sh:hyperbolic sine function

From equation (17), through several arithmetical
operations, v and @ can be expressed as a function
of ¢, ¢c,, At,and f. Figures 2 and 3 show exam-
ples of the relationships between c., f, «, and
v. Figure 2 is the plot for v and a , when ¢, was
varied from 0 to -5000 with ¢ =5000 ft/sec, f=
50Hz, andAt=1msec. As can be seen in the
Figure 2, 3, v is almost constant and a increases
linearly along the c¢: axis. Figure 3 is the plot for
v and @ when f is varied from 5 to 100hz with
¢ =5000 ft/sec, ¢: =-500, and t=1 msec. @ also
increased linearly with f and v is almost con-
stant.
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FIGURE 3 Plots for v vs. f and « vs. f Velocity v is
almost constant and e linearly increases along
the frequency for ¢, =5000 ft/sec, &t= 1msec,
and ¢, =—500,

As shown in the Figures 2 and 3, we can
choose any value for c. and obtain corresponding
a value for v and a. If we choose large value for
c: 2, the wave will be highly attenuated with the
attenuation coefficient « . Dispersion is caused
by v not being exactly equal to ¢

VI. EXPERIMENTAL RESULTS

Figure 4 shows the structure for the test.
model. The velocity is 500 ft/sec at all points,
and there are two different attenuation constants.
In both side strips the attenuation constant

is 0.1256 and in the middle strip the attenuation
constant is 0.0, A horizontal plane-wave source
is introduced 600 ft below the surface in the
middle strip.

For comparison, the same problem was
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FIGURE 4 Structure diagram. A uniform velocity of 5000
ft/sec, attenuation constant for both side is
0.1256 and there is no attenuation in th mi iddle
part. A horizontal plane wave source ntrodu-
ced 600 ft below the surface in the mi ddl str p
where there is no attenuation. Structu is
128X 64 and grid size is 30ft for both th d

y directions.

solved with zero attenuation at all points. The

grid spacings were 30 ft in both the x and y
direction and the number of grid points was 128 x
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term generated a zero phase wavelet with a fre-
quency range O to 30 Hz. The time step for the
computation was 1 msec.

Snapshots of the pressure distribution at times
500 and 1500 msec are shown in Figures 5 and 6.
Figures Sa and 6a show the the waves when the
attenuation is zero. The diffractions from the
edge of the initial plane wave wrap-around because
of the Fourier method of computation, as can
be seen in Figure 6a. By adding attenuation
within the side strips the wrap-around effect is
reduced as can be seen by comparing Figures
6a and 6b.

V. DESCUSSION AND CONCLUSION

As shown by the experiments described in
this paper, the inclusion of attenuation by using
a complex velocity works quite well with the
standard one-way numerical modeling algorithm,
This algorithm would be applied to the forward

.,("“l}}il'iii r'}\\jﬂ“}] l}' I “llll /
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FIGURE 6 Snapshots at lOUms
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(b) Wi th atten t nt of 0.1256. This
figure shows th t wrap-asound noise which comes
from th Fourier tr form property is reduced

by the attenuating medium.
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and inverse modeling for more realistic models.

Some advantages may be

(1)
(2)
(3

(4)

to reduce allocated storage space,

to reduce computing time,

to reduce the noise generated at boundaries,
and

to reduce the high frequency noise which
is generated in the inverse modeling

Although more researches for reuction of attenua-

tion boundaries are prospected, it is expected that

these results are useful for computing wavefields

by Fourier method.

)
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