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ABSTRACT

This paper deals with the decentralized robust adaptive controller design for large-scale
interconnected systems. We consider an arbitrary interconnection of subsystems with unkown
parameters and bounded disturbances, When the disturbance and uncertain interconnections are
present, the stability of the controlled large-scale system is ensured if there exists a positive defi-
nite M-matrix which is related to the bound of the interconnections, The possible bound of the
interconnections is assumed to be known P order polynomials for the decentralized adaptive con-
troller. A modified adaptive law is proposed guaranteeing the existence of a region of attraction
from which all signals converge to a residual set ), which contains the equilibrium,.
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1. INTRODUCTION nected. The overall system may be considered to
be a set of small interconnected subsystems, For
We have attempted to address the problem of such systems, with possibly many interconnected
controlling large-scale systems which are intercon- components, the dynamics of each subsystem
] - may be individually Aetermined but the intercon-
PHERB E R . . .
Dept. of Electrical Eng.. Kwang Woon Univ. nection terms are harder to identify. A drawback
i &M 93 138 of most centralized adaptive schemes is that they
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are concerned with the dynamic structure of the
processes they are controlling because they re-
quire parametrization of the dynamics of the sys-
tem in linear paramatric form. They cannot hand-
le structural changes in the system. Qur approach
i1s to decouple complex systems from control by
using appropriate simplified linear reference mo-
dels. Traces generated by these models are track-
ed using decentralized controllers which must be ro-
bust so that they perform well under lack of para-
meteric uncertainties and variable dynamics. The
fundamental uncertainties encountered in decen-
tralized controller design are the strength of the
interconnections among the subsystems. Most of
the previous works in decentralized control of la-
rge-scale systems can be found in [1][3]{7][8]
and their works are based on the assumptions
that the interconnections are either bounded by
known or unknown Py, order polynomials in states
[2). The standard M-matrix conditions have been
used by Ioannou{5] and Ossman[9] for decentral-
ized adaptive controller designs. The stability of
the controlled large-scale sysetm is ensured if
there exists a positive definite M-matrix which is
related to the bound of the interconnections. In
this paper, we investigate robust adaptive con-
troller design when the strength of the intercon-
nections among for subsystems is bounded by a
known polynomial in states. We consider the de-
centralized adaptive control for the interconne-
cted subsystems with unknown parameters, non-
linearity and bounded disturbances. The stability
of the overall adaptive decentralized controller is
analyzed through the Lyapunov direct method
and Kalman-Yacubovich lemmal3]. The robust
adaptive decentralized controller is proposed to
drive the uncertain subsystems to track the local
reference models [6](12](13] as closely as poss-
ible with improving a steady state deviation,

[[. INTERCONNECTED LINEAR SYSTEMS

We consider a large-scale systems S which is
composed of N interconnected linear subsystems

Si. Each subsystems S; of control area may be re-
presented as

N
S;: 5(,'=A,'x,'+b,'U,'+Di+?: Sii(t, x;) (1)

Y :thr (2)

where x;(¢)€ R™ is the state vector, U;(t)ER is
the control input, A; € R™ X R" is the unknown con-
stant matrix, and b; € R™ is the unknown constant
vector, The unknown function f;;{¢, x;) € R”, where

N
n=7Y m,is the strength of interconnections from

7

other subsystems. It should be noted that the in-
terconnections are assumed to satisfy the follow-
ing formular,

I it x| <aij lx;ll (3)

where a;; describes the unknown arbitrary posi-
tive definite constant. The overall systems S can
be written in a compact form,

SIX=AN+BU+D+F(, x) (4)

Y =X (5)

where X =[ X7, XT, . X7) are states, D=[ DT,
DT, ..., Di] are disturbances and F{(¢, x) is inter-
connections of subsystems, The constant block
matrices 1€ R" X R”" and BE€ R* X R\ are represen-
ted by A=diaglA\., ... Av], B=diag(B, ..., Byl
We now investigate the formular of the problem.
The objective is to track a reference tragectory X
generated by a linear reference mode! V/;, 1€ N

M imz‘ = A i X +b"‘ll Y (6)
Voni :—‘(‘,1,;,- Xomi (7)

where A, i1s a stable constant matrix. Therefore,
1t satisfies the Lyapunov matrix equation. i.e,, for
any positive definite matrix ();, there exists a un-
ique positive matrix /% such that
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AL P+ P Ay = — Qs (8)

The overall reference model M for the systems
can also be written in a compact form

M X = A Xon+ Bmr (9)

Y =CnXm (10)

where »€ R is the reference input vector and A,
=diag| Am., ..., Amv), Bm=diag|Bmi. ..., Bmv].
when there is no disturbances, and non-intercon-
nections, i.e., in the case of =0 and I'(¢, x) =(),
the above formulation describes the single input
single output adaptive control systems. But the
term F (£, x) has nonlinearity for interconnections,

II. DECENTRALIZED ADAPTIVE CONTROLLER

We consider the transfer function of the plant
1S given by

Ni(s)
Di(s)

Wyls)=hb(SI~A,) " by=K, (11)
where N;(s) is the »;—1 order monic Hurwitz poly-
nomials, and D;(s) is the n; order monic polynomi-
als. The reference model is assumed to be order n
with a strictly positive real transfer function

Zm(S)
Rnls)

Wi (8) = CEAST— Am) "' by = K (12)
where Z,(s) and R.(s) are monic Hurwitz poly-
nomials of degree n—1 and n respectively and K,y
is positive.

The controller structure is completely describ-
ed by the differential equation.

Y= AT + g (13)

wt =cry iy (14)

MY =AY + gy (15)

WY =dHy, +dft (16)
1370

Foalr®), VI, Yo0), V() ]F 17)
0; 2 | Ki(t), CT(), d5 (), dT() )T (18)
Uy = 0" () W(t) (19)

where A is an asymptotically stable matrix and det
[ SI—A]=a(s). It follows that when the control
parameters K(t), 61(2), 0o(¢) and 6,(¢) assume con-
stant values K., 0., 6y and 6., respectively, the tr-
ansfer functions of the feedforward and the feed-
back controllers are respectively

A(s) D(s)

i) —c(s 2T (20)

and overall transfer function of the plant together
with the controller can be expressed as

Ke Kp Ni(S) A(s)

Wals) = [A(s) = ()1 Di(s) — K, Ni(s) D(s)

(21)

where A(s) is a monic polynomial of degree n—1
and ('(s) and D(s) are polynomials of degree n—2
and n—2 respectively. The parameter vector 6,
determines the coefficient of ¢ (s) while 6, and 9.
together determine those of D(s). Fig 1. shows
the decentralized adaptive “controller structure
which used in this paper.

[et (*(s) and D*(s) be polynomials in S such
that

Als)—*(s) = Ni(s), Di(s)— K, D*(s) = Ru(s) (22)

Fig. 1. The decentralized adaptive controller.
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Futher let A(s) =Z,(s), then scalars K*, 6; and 6}

and 3 exist such that K*= 11‘\': L0 (SI-A) N g
__C*(s) * T . 1 g o D*(s) .
="s) and 65 + 605 (sI—A) "1 g; ETISH choos
ing 6(t) =6* where 8* is defined as

o* 2 [k 01", 65, 03" 1" (23)

The transfer function Wy(s) in Eq.(21) becomes

Ni(s) Zm(s)
Ni(s)L Di(s) —kpD*(s)]

W()(s):km :‘:Wm(s) (24)

The overall systém equation describing the plant
together_wfth the controller can be expressed as

'4/
E? 4 0 0] [ = b
oV =1 0 A0 |vV]+]| &l (67 wi]
l.),'(Z) g,h‘T O A 'U,‘(Z) 0
(25)
Yo = hi x; (26)

where we define the following parameter errors :

#(t) =k(t)—k*, @it) =0:(t) 0],

o(t) 2 [4(1), oT(8), oI (1), oT(t) 1"
then eq(25) can be written as
x = Agx +bi k*r + o](1) v;) (27)
where

A; + b; 65 Wt b; 08’ b 05 d

Ai=| &OhT  A+gt) g6 (28)
gih! 0 A
b
bi=| g |, hi=1h,00), x2[«], o7, o7] (29)
0

since Wo(s) =W ,(s) when 6(¢) = 0*, it follows that
the reference model can be described by the (3z
—2)" order differential equation

X'mi = Ami Xmi + bmik*7i, Ymi = hTer (30)

Where Xmi= [ X77, 017, 03" 1"

X7 (¢), v1(¢) and v3(¢) can be considered as sign-
als in the reference model corresponding to x;(¢),
v1{#) and v»(¢) in the overall system.

Therefore, the error equation for the overall
system may be expressed as

& = Ami € + bmi @Tvi + Dei + F; (31)
ei=hlhei=[1,00 ]e (32)

Where €= X —Xmi, €i = ¥i~Ymi.» Dei=[D7, 0, 01"

N
Fi=[Y f£i7(, %), 0 017
=1

Equation (31) is of dimension 3n—1 while the cor-
responding W,,(s) is order n. The models remain-
ing 2n—1 poles are uncontrollable and/or unobser-
vable but ‘asymptotically stable since N;(s) is Hu-
rwitz,

Ioannou{2] proposed a decentralized adaptive
controller for computing the parameters of each

subsystem :
é,'= —0; I 6; — I ey v (33)
. 501' 1f ” 91' ” > Uoi
where &, = .
0 1f " 01' “ < Hoi

I; is a positive definite matrix of appropriate di-

mension,
IV. DECENTRALIZED ADAPTIVE SYSTEM STABILITY

It is shown that the equilibrium stable (e =0, ¢
=) of Egs (31) and (32) is uniformly stable in
the large and /lim e{t) =0.

Let I'(e;, ¢;) be a Lyapunov function candidate
of the form

e, (/)i):—;— (&7 Piei+ T T ) (34)
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From the Kalman-Yacubovich lemma, it is known
that if #/(S/—4) 7 'd is strictly positive real, a
matrix P exists such that 4/ P4+ P4= —qq' —¢L,
Pb=h for some vector q, matrix L=/ >( and £ >
0. It is clear that 1'(¢;, ¢;) = 0. The derivative of
this function (34) using the adaptation law (33) is

Ve;, @) = —% eMgigT +eli)ei <0 (35)

Hance, the equilibrium state (e; =0, ¢; == () of Egs
(31) and (32) is globally stable. Alsoe€ £Zandeis
bounded.,

In eq (35), we consider the asymptotic stable and
convergence to get the following equation.

V=Y alelPaei+ o] 7 ¢i] (36)

N
i)
where a;= [ a1, ay, ..., av ]! is positive elements
with dimension N. The standard M-matrix can be
written in a form

ai(A;—2gi)) =7

M= o (37)
’ r—=Aa; gij + ai gij) 17

M;; is positive definite matrix which is ensured if
there exists, The derivative of eq (36) is

a; L AeiTQiqg‘el & g?[<1 €; + Zel?vlju D
)

i
1=

+ 26? I)z‘i [; - 2(71' (P;r()z } (38)

where LZ% & min A(L;)
Hi;— ‘ [)”‘ ‘ &, 1)1' = max k<1)u')
ri=max MI7'),  doi=supl P Delt) |

N
Xoi ::SMD,: &ij H X'm,'(f) H, Xm:min l(‘[)
The local interconnected function [v; is satisfied as
N
H 1:1 ‘ < : az'/'(H eiH + }‘ anH) (39)

The derivative of eq (38) can be rewritten

1372

"< *bnl'—i Ll ei 12 (Am—bo i Poy) + ail 60— bor:) lill2]+ g

+3 @l low—oid ol = oi16:12= 16}1)] (40)

where J=Y —— %
v (Do x0i)?

N
=

. ayi
), min(—=)]
a; Pei ¥i

b() = min |, min(

In this case, we conclude that the derivative of
eq (36) is adaptively estimated using

(ovi — i) loil* < 6¢i(00; + 116712
=g (02— 10712 < o0; 167 |12 (41)

llv < "‘b()[v+ku

where ko=Y i + o000+ 107 1)

il Ai
+aul107 1]

Y (Dyi + x0i)*

Let us consider a Lyapunov function candidate

(8 < e b1(0) + (1—e ) %‘[: L Viz0 (42)
By choosing ¢;(¢) and 6;(f) are bounded, the re-
sidual finite constants &, and gy exist. Therefore,
overall parameter adaptive errors ¢;=[¢]. @7,

. @71 and tracking errors ¢;=1[e7, ef, ..., el ]
are globally converge to a residual set Dy.

, . k
where Dy={(¢p. e): lol2+llel?<——}
by qo

V. AN ILLUSTRATIVE EXAMPLE

We consider power systems of multivariable dy-
namic system consisting of two generators in a
power grid[4]. A power system has to maintain a
constant frequency and, hence two generators con-
nected to it must be in synchronism, For this ex-
ample we specify the control objectives of the over-
all power system ensure system stability and ma-
intain the desired frequency and power balance
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with changing load conditions.

Two respects in adaptive power system control
that have received considerable attentions are (1)
adaptive load-frequency control and (2) adaptive
generator exciter control. In this paper, we inves-
tigate the problem(1) from an MR AC point of view.
In a power system, coherent groups of generat-
ors(called areas) are connected by tie lines. Each
area meets its load changes according to a chara-
cteristic that relates area normal value whenever
changes in frequency occur due to changing load,
while maintaining interchange with other areas wi-
thin prescribed limits. If constant controller para-
meters are used, they are, at best, compromises
between values that give good damping at light
loads and values needed for heavy load conditions.
Hence, for improved performance, the parame-
ters of the controlier must be varied with time,

Defing the state vectors x; = ( f Af:dt Af;, Ax,;,

Ap;)T, output vector y;==Af; and input vector #;
= [ A f; dt, the adaptive law of the interconnected

power system can be described as

é{: —6;I; 8, — ey v; (43)
5 = { doi , I 60: 1l > 6yi
© o, 161 < 8:

where Jp; and 0y; are design parameters and I; =
I'">0. e, is frequency deviation Af; and Ax,; is
governer speed regulation deviation, and AP; is
generating power deviation. For simulations, we
can be described as the following linear equations
with 8th orders.

5(1 :A[ pal —+- b] l'l + 1)1 + El X2
&2:."2x2+bglvg+])2+1‘:'_’X11 (44)
where state vectors and interconnections as

w=[[Aafidt Afi Axa. AP

wo=[{Afidt, Axe. AP

lez‘fAfgdt, X'n:j‘Afldt

The system is in the form of comparing to (1),
we obtain the subsystem matrices as

0 1 0 0
327 0 6 0
A=l 0 -333 333 |-

0 —5208 0 ~125

b=[000125]"

Dy=[0 —~0.30 0], D,=[0000]"

E=[032700]"

We choose the stable coefficient matrices as

-1 -01 0
A= —01 -1 =01
00 -01 -1

with I7gxs) Upper triangle nonzero elements
L, =L, =01
LGi+1) =L(,i+1) =001
L,i+2) = L, +2) = 0.01

Disturbance vector D has all zero elements but
D, has the nonzero element so that there is a load
change in area 1. For 8th order interconnected sys-
tem, the simulations are shown in Figs. 2. and 3.

Fig.2 shows the frequency deviation and Fig.3
shows the parameters of decentralized adaptive con-
troller. We observe that the frequency deviation
of two controllers are similiar on the system tran-
sient states and both controlled systems are stab-
le as expected. Now we increase the order of the
one controlled area to 5th order. The simulation
results are shown in Figs, 4 and 5, the frequency
deviation is shown in Fig.4, which i1s bounded as
we expected. We also see the decentralized adapt-
ive controller parameters track as expected in Fig.5.
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Fig. 2. Frequency Devlation of 8th order interconnected
system
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Fig. 3. Controller Parameters of 8th order interconnect-
ed system

VI. CONCLUSIONS

The design of decentralized adaptive controller
for a class of large scale systems is investigated.
Two areas which are connected by tie lines are con-
trolled by adaptive load-frequency control. A de-
centralized adaptive controller is proposed to dr-
ive the unknown subsystems to track the local re-
ference models as closely as possible with reduc-
ing residual output errors, A numerical simulations
of adaptive power system are presented to dem-
onstrate the possibility of the higher order inter-
connected systems.
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