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Sung Woo Park*, Young Chon Kim* Regular Members

Wt dolet YIEAAE 213 HH A2 4 dug S

TeH Ot B OF* EeH & &k e

ABSTRACT

For solving the optimal routing problem (ORP) in large data networks, an algorithm called the
hierarchical aggregation/disaggregation and decomposition/composition gradient projection (HAD-
GP) algorithm is proposed. As a preliminary work, we improve the performance of the original iter-
ative aggregation/disaggregation GP (IAD-GP) algorithm introduced in [7]. The A/D concept used
in the original IAD-GP algorithm and its modified version naturally fits the hierarchical structure
of large data networks and we would expect speed-up in convergence, The proposed HAD-GP algor-
ithm adds a D/C step into the modified IAD-GP algorithm, The HAD-GP algorithm also makes use
of the hierarchical-structured topology of large data networks and achieves significant improve-
ment in convergence speed, especially under a distributed environment. The speed-up effects are
demonstrated by the numerical implementations comparing the HAD-GP algorithm with the (orig-
inal and modified) IAD-GP and the ordinary GP (ORD-GP) algorithms.
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L. Introduction

Since optimization theory was introduced into
the area of data networks, several efforts have
been made to solve routing problems using those
techniques [1]. The gradient projection (GP) al-
gorithm [2] {3] is known to be one of the most
popular and efficient optimization techniques ap-
plied to optimal routing problems (ORPs). Ber-
tsekas et al. successfully implemented the GP al-
gorithm for path-formulated optimal routing (4]
and provided the validity and robustness of the
GP algorithm in somewhat realistic environment
[5] [6]. Tsai et al. also proposed an algorithm cal-
led the IAD-GP incorporating the existing GP al-
gorithm and the iterative aggregation/disaggregalion
(A/D) method to solve the ORP for large data
networks [7]. The main idea of the IAD-GP al-
gorithm is to aggregate a physical network by a
gateway-connected network whose disaggregated
routing solution converges to the optimal one.

First of all, we propose a modified version of
the IAD-GP algorithm which uses a slightly dif-
ferent A/D step from the original one. However,
the performance of both the original and the mo-
dified IAD-GP algorithms is limited by the lack
of detailed routing information on the gateway-
connected network. Since the gateway-connected
network adjusts flows between gateways/clusters,
no detailed routing information for intra-cluster is
used and this may cause the [AD-GP algorithm
to slow down if the main bottle-neck in routing is
caused by intra-cluster flows,

To overcome this problem due to unbalanced
traffic flows, we propose another algorithm called
the HAD-GP (hierarchical aggregation/disaggreg-
ation and decornposition/composition gradient pro-
jection) algorithm, which combines the modified
IAD-GP algorithm with the decomposition/compo-
sition (DJ/C) method. In addition to running the
modified TAD-GP routine, the HAD-GP algorithm
runs a D/C step that decomposes a given network
into several subnetworks, runs GP iterations on
each subnetwork independently, and composes

the routing solutions from those subnetworks. Bv
allowing each subnetwork to run its individual
GP iterations, the D/C step adjusts flows inside
each subnetwork for which the A/D step cannot
handle. This concept of divide and conquer fits the
hierarchical structure of network topology and is
well suited for distributed computation. Thus we
expect a proper combination of the A/D and D/C
steps with GP iterations to provide significant
improvement in the speed of convergence,

This paper is organized as follows, In Section 2,
we introduce two network models for the A/D
and D/C steps and formulate the ORP with the
GP algorithm as a solution technique. Section 2
discusses the speed-up effects achieved by using
those network models. In Section 3, the details of
the original TAD-GP algorithm and its modified ver
sion are presented. Section 4 proposes the HAD-
GP algorithm. Performance comparison of the pro-
posed aigorithms (modified 1AD-GP and HAD-
GP) with the exisiting ones (ORD-GP and orig
inal TAD-GP) 1s provided through implementation
results in Section 5. Finally, Section 6 summar-

1zes this paper.
II. Problem Formuiation

2.1 Network Models

Suppose that we are given a network with a
large number of nodes. The network can be nat-
urally transformed into a hierarchical network by
clusterization. Each cluster at the k-th level is
called the level'k cluster. A network consisting of
these level-k clusters is also called the level-k net-
work. Then what would the level-k network look
like when viewed from higher (k-+1) level or
lower {(k—1) level? Those views would provide
the transformed networks which are different
from the original level-k network. A higher level-
(k+1) cluster would not see the inside details of
the level k clusters but consider them as ordinary
nodes. On the other hand, a lower level-(k—1)
cluster recogmzes only their peer level-(k—1)

clusters inside the level-k cluster they belong to.
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These transformed networks generated from the
view-point of higher level and lower level are cal
led the level-k aggregated network and the level-k
decom posed network, respectively. The level-k net
work itself is also called the level-k detailed net
work. Since the above argument can be gener
alized to any other levels. we drop out the term
level-k and restrict our concerns to a 2-level hier-
archical network hereafter.

Suppose that a given detailed network can he
naturally partitioned into clusters. An aggregated
network is created from the detailled network
through an A/D step. The first step is to pick up
the gateways of the detailed network with direct
links between gateways unchanged. |f there ex-
1sts no direct link between gateways, a virtual
link 1s provided. From the gateway connected net
work abtained, we complete to construct the ag
gregated network by adding one virtual node per
each cluster. The virtual node represents all the
origins and the destinations inside the cluster and
1s fully connected to and from the gateways with
in the cluster,

A decomposed network is generated from a
detailed network via a D/C step. The decomposed
network corresponds to a cluster of the detailed
network. Ifach cluster 1s directly transformed into
a decomposed network by disconnecting all the
inter-cluster trunks, so that several decomposed
networks are usually created. While an A/D step
transforms routing information to and fro be
tween the detailed network and the aggregated
network, a D/C step transforms routing infor
mation to and fro between the detailed network
and the decomposed networks.

The above process of network transformation
through the A/D and D/C steps are described in
Figure 1. The detailed network contains eight
nodes and can be divided into two clusters. Each
cluster includes four nodes, two of which are used
as gateways. The aggregated network consists of
four gateways and two virtual nodes representing
each cluster. For each virtual node, two virtual

links connected to each gateway are also created.
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On the other hand, each cluster can be directly
transformed into the decomposed network by dis-
connecting inter-cluster trunks.

A/D

r

A

D/C

@ virtual node
O physical node

Figure 1. A/D and D/C steps.

2.2 GP method for ORP

Suppose that we are given a directed graph G

(N, L), where N 1s the set of nodes, and £ is
the set of directed links. Let W be a set of orig-
in-destination (OD) pairs, and for each OD pair w
e 11, let the traffic demand be r,. The main vari-
able 1s the set of path flows x = {x,! which sati-

sties the following constraints :

Voxpmre, x5 20,
7

pEP., YWEW (1)

where [’ 1s a given set of paths for an OD pair w.

Consider a link cost function :

D (Fy) = —[Lj—

2 Ei
where (;; is the capacity of link (7, j) € £ and Fj;
is the flow on link (¢, 7) € £. D;;(F;;) indicates the
average number of data packets waiting or being
transmitted on link (7, 7) € £ assuming the be-
havior of an M/M/1 queue in equilibrium. The
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overall cost function is defined by the sum of
each link cost function divided by the total traf-
fic demands over the network :

D(x)=

<= <~
<
n

Wfer Dij [pEZI’U %]

where P;; is the set of all paths traversing link (7,
7)€ Land Y=Y e 7. The path-formulated ORP
is that of minimizing D{(x) subject to the con-
straints (1),

Define a variable s, to be the path having the
minimum first derivative length (MFDL) and x,,
to be its flow for w. The FDL and the MFDL on
path p are given by

dy= Y D{i(Fij), di,=mind,, pElw, weW
e, »

where [, is the set of links belonging to a path p.

By substituting x5, = 75— Y pe pu. prsw Xp, VWE W

into D(x), we obtain a transformed form of ORP

involving only positivity constraints :

minimize DU(F)
subject to xp =0, PE Py, p # Sw, VW E W,

D(X) now becomes a function of X =1xp\, P E Pp,
P # s, Ywe W, The GP iterations for the ORP
take the following form :

xf =maxi0, xf— o (H)) dEi—dE)!,
PE Py, p#Sw, VWEW (2)
where k indicates the current iteration step and «

1s a step size, The second derivative length (SDL)
1s given by

Hy=3Y Dj(F;)

G jYel,
where L, is the set of links belonging to either pa-
th p or s., but not both. The GP iterations (2) is
called the detailed GP when applied on the detail-

ed network. For the aggregated and the decom-
posed networks, they are also called the aggreg-
ated GP and the decomposed GP, respectively.

The convergence proof of the detailed GP al-
gorithm is well described in [8]. Since each of
the aggregated and the decomposed networks can
be considered as another non-hierarchical detailed
network, it is easy to see that the convergence
results derived in [8] can be extended for solving
the ORP in those networks.

2.3 Speed-Up Effects

Suppose that the aggregated and the decomposed
GP iterations are performed in a distributed way.
The computation time of a GP iteration i1s domin-
ated by the shortest path routine involved whose
time complexity depends on the number of nodes
in the network, Noting that the transformed net-
works consist of relatively smaller number of no-
des than the detailed network, it is expected that
the convergence of the aggregated and decom-
posed GP iterations can be accelerated,

For an example of the speed-up effects, con-
sider an xn-node detailed network consisting of ¢-
clusters. Assume also that each cluster has a fi-
nite number of gateways bounded by 0(¢). Dijk-
stra algorithm 1s chosen for the shortest path
computation of the GP iteration. Then each node
is responsible for finding the shortest paths for all
OD-pairs with itself as the origin. The time com-
plexity of Dijkstra algorithm is O(»*) for an »n-
node network. Since the detailed network con-
sists of n nodes, it takes O(x°) times for every
node to find the shortest paths for all other dest-
inations. On the other hand, Dijkstra algorithm
running on the aggregated network solves the
shortest path problem within ({¢?) times since
the aggregated network has only 0(¢) number of
nodes, Computation time per GP iteration now
can be saved by the difference of O (»n*— ¢?).

With the decomposed networks, similar type of
time -savings for routing computation can be exp-
ected. Consider again an n-node detailed network
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with the number of clusters bounded by (¢}
This time the detailed network is transformed do
wnward into several c¢-decomposed networks of
size O(=). Dijkstra algorithm 1s also applied to find
the shortest paths between all OD pairs in a di
stributed way. Then 1t takes O( :I~ ) times for each
of the decomposed network to find the shortest
paths of all OD pairs. Comparing with ((x-)
times of the detailed network, the computation
time per GP iteration can be again saved by the
order of ¢ folds.

From another point of view, the GGF algorithm
converges 1 Ok | P number of iterations
[9]. where k is the diameter of the network, |11 |
Is the total number of OD pairs, and ., 1s the
maximum number of active paths per OD pair for
all iterations and all O pairs. For the aggregated
network, 4 usually redeces by the factor of O
and 17} by the factor Dt ). For the decom
posed networks, & reduces by 050 and HET by
()(f*[: ). Accordingly, when applied for the aggreg
ated and the decomposed networks. the overall
time complexity of the GP algornithm reduces by

the factor of O(c™) and (), respectively,

[l. IAD-GP Algorithm

The A/D step used in the TAD GP algorithm
consists of three substeps :aggregation, GP iter
ations and disaggregation. Once an aggregated
network 1s generated from a detailed network,
the aggregated GP iterations are successively per
formed until the convergence is reached. Atfter
then, the aggregated network 1s disaggregated
into the detailed network and the control of al
gorithm returns back to the main routine where

the detailed GP iterations are apphed.

3.1 A/D step | 71

The A/D step starts by constructing an ag
gregated network from a given detailed network,
Then the detailed path flows sharing the common

gateways are aggregated :
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¥i= N x,, pE Pu, YWEW, pe Pi VWEW

g p
i

where I’; represents the set of aggregated path
for each aggregated OD pair w€ . The FDL and
the SDE. which are essential to the aggregated
G iterations, are given by

Y pepaeq XpXydp

dy

dpg =

L/n p X/;d/:
X ’ X5 X;

PE P qE U Ywe W, pE Py q€ O, YWE W

where (0, (():) is another set of active paths be-
onging to wl(w) and may or may not correspond
to Pt 0, Aggregated paths f) and ¢ must he mu
tually disjoint. For successive running of the ag-
gregated GP iterations, aggregated virtual link
capacity (AVLC) on ink (7, /). denoted by TS
estimated using the FDL of link delay with re

spect to the flow
dy e . EL peli, Ywell (3)

where £is the set of hnks on the aggregaled net-
work and 17,, X/,

Now the aggregated GP iterations are obtained
from (23 by replacing the detailed path tlow x,
with the aggregated path flow x :

PLER A ko k k
Xy max i), x5 - a"{dpa.

) HdE i)

pE Pu p# po. Ywe N,

The disaggregation procedure properly distri-
hutes the aggregated path flows back into the
detailed path flows. It disaggregates each ag-
gregated path flow according to a weighted aver-
age of the corresponding detailed path flows. The
waight 1s determined by the amount of the detailed
path flow assigned at the previous detailed GP
iteration (betore aggregation) :

Xy

Xp

. Xj,
E_p\ nXnp
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PE P, YVWEW, pe Py, YweW.

3.2 Modified Version

Recalling the eq. (3), in the original A/D step,
the AVLC is estimated using the initial aggreg-
ated path flow and remains fixed while running
the aggregated GP iterations. The fixed AVLC
implies that the dynamic situations inside the
cluster cannot be taken into account in perform-
ing the aggregated GP iterations. Thus the per-
formance of the aggregated GP iterations is re:
stricted as to distributing the aggregated path
flows optimally. As a result, more detailed GP 1t-
erations may be required to obtain the global opti
mal routing solution after disaggregation, It is pos-
sible to perform the A/D step for every aggreg-
ated GP iteration. In this case, however, proces-
sing time to switch the detailed network to and
from the aggregated network may not be ignored.

The original disaggegation procedure also has a
drawback. Flows on the detailed paths can be
reassigned only when they had existed before the
A/D step was applied. Suppose that an aggreg-
ated path is created after the A/D step and is to
be disaggregated into the detailed paths. It turns
out that the original disaggregation scheme fails
unless there exists any detailed path ha\{ing non-
zero flow before aggregation ;the completeness
condition is not satisfied.

The above arguments state the A/D step must
be carefully inserted between any two successive
detailed GP iterations. For the original A/D step
to work well, the detailed network should have
been to some extent stabilized before aggre-
gation. However, this contradicts the purpose of
using the A/D step to reduce the convergence
time in large networks. The A/D step becomes
more effective as early as they are inserted since
the aggregated GP iterations are allowed to shift
larger amount of path flow in the direction of the
optimality than the detailed GP iterations. To
overcome these problems, we devise more ef-
ficient schemes for the AVLC and the disaggreg-

ation. With these schemes, the A/D step can be
inserted much earlier than the original A/D step.
Although the virtual links between gateways
inside each cluster provide transit paths for inter-
cluster path flows, this effect can be ignored pro-
vided that traffic demands are easily distributed
over the clusters. That is, the AVLCs in each
cluster are assumed to be sufficient to accommo-
date traffic demands such that the main part of
cost function arises from intra-cluster traffic fl-
ows. For this purpose, the AVLC denoted by ¢ *
takes the maximum amount of flow that the at-
tached gateways can handle on its outgoing/in-

coming links :

Co=Y (o, G J)eEL (ik)el
(k) e By
where £, £ 1s the set of outgoing links attached
to gateway 7. The AVL.C only needs be large enou-
gh not to cause any overflow on the virtual link,
Once link overflow happens, it takes many of the
aggregated GP iterations to recover from it —
much more than in normal situation,

The disaggregation scheme is now based on a
welghted average of the current aggregated path
flows. We first compute the ratio of each aggreg-
ated path flow to the traffic demand of an ag-
gregated OD pair and use this ratio for distribut-
ing the aggregated path flows into the detailed
path flows, That is, each detailed path is reas-
signed the path flow depending on the flow ratio
determuned by the corresponding aggregated path
flow, not by the previous detailed path flow. If no
pre existing detailed path 1s found, we find the
subpaths with MFDL from each cluster and com-
bined them to form a new detailed path. The
MFDL subpaths are generated by running a shor-
test path routine on each cluster. This disaggreg-
ation scheme produces at least one detailed path
for every aggregated path :

Xp
PE P, YweW, pe Py, Ywell.
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IV. HAD-GP Algorithm

By transforming a detailed network into an ag
gregated network, the |AD GP algorithim reduces
the problem size (number of nodes) to speed-up
the convergence rate. For the same purpose, the
detailed network can be divided into a set of de
composed networks (clusters), The decomposed
GP iterations are applied on each cluster in a sep
arate and distributed way. After then, the control
of the algorithm returns to the detailed network
with the decomposed routing solutions combined
from each cluster. This procedure is called the D/
C step.

The decomposed networks have intra-cluster
nformation onlv, where as the aggregated net
work has inter cluster information. By alternately
running the A/D and D/C steps, the HAD GP al
gorithm has the freedom to adjust path flows
two distinct (nter cluster and intra-cluste) com
ponents of routing. That 1s, the HAD GF algor
ithm seeks the approximate optunal rowting sol
ution through the proper combinations of the A/D
and D/C steps while saving computation time,
Finding the exact optimal routing solution will be

left to the detailed GP iterations.

4.1 Virtual Capacity

Since the decomposed networks are available,
the A/D step of the HAD GP algorithm is capab
le of estimating the congestion level of each de
composed network. The congestion level 1s deter
mined by the hnk utihzation averaged over the
decomposed network, Now the average link utiliz
ation of cach decomposed network is used for
deciding the AVL.C. The average link utilization
is initially computed by running the detailed GFP
iterations only with intra cluster traffic demands.

Then a new AVILC is given by
Co=CB(-p), ek

where p is the average link utilization computed
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from mtra-cluster path flows. That is, the AVLC
in the HAD-GP algorithm is the maximum avail-
able capacity of the gateways from which a por-
tion of optirnal intra-cluster path flows are subtr-

acted.

4.2 D/C step

For decomposition, a detailed network is simply
partitioned into independent clusters. lkach de
tailed path 1s also partitioned into subpaths ac-
cording to the decomposed networks involved. For
an intra-cluster path, a detailed path is exactly
cquivalent to the corresponding decomposed pa
th. For an inter cluster path, however, a detailed
path 1s broken into several decomposed paths
cluster by cluster. The decomposed path flow p,

m a decomposed network 7 15 expressed by

Xy, pE I, YWEW. pi € Py, 10 € W,
where 13,4. represents the set of decomposed paths
for a decomposed OD pair w; € W, That is, for all
the detailed path flows sharing the common part
m each cluster. a decomposed path 1s created and
the sum of the detailed path flows 1s assigned as
the decomposed path flow.

The decomposed GP iterations for the decom-
posed network ¢ are obtained again from (2) by
replacing the detailed path flow x, with the de-

composed path flow x;:

ko k
x. o maxi0, x; —a*(d
b fi

yUd, —d; M,

K
Pilw; bi Pu;

/‘), S f'zi,. f;, # f)ri', . Vflh € ‘{1 .

For composition, several decomposed paths in
each cluster are combined to form a new detailed
path. The crust of the composition scheme is to
piece independently developed decomposed paths
to generate new detailed paths. Let us denote &
new detailed path after a D/C step by p” and its
path flow by x, . A composition scheme to gener-
ate new detailed paths from independently devel-

oped decomposed paths 1s as follows :
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Repeat (a)-(c) until x,=0, p€ Py, Vwe W
a) p’=1{Upi:x, =min[x,, min(max x,) I,
i€ Py, Y, € W, S
b)x,=xp—x
Clx, =X, piep.

Index 7 denotes the identity of the decomposed
networks that the detailed path traverses before
the DD/C step is applied.

Each iteration of this composition procedure
produces a detailed path., A careful examination
of the proposed composition scheme indicates
that the computational overhead is in the order of
{W{Pnao where |W/| is the total number of QD
pairs and Puer 18 the maximum number of active
(detailed) paths per OD pair for all iterations and
all OD pairs. Recall that the time complexity of
the detailed GP algorithms is O (AW | Ppy.) where
h is the diameter of the network. Then the time
complexity O(|W|Pmar) of the proposed compo-
sition scheme is comparable to that of one de-
tailed GP iteration.

Figure 2 describes an example of this compo-
sition step. Consider a detailed path traversing
three clusters ( I, [ and ) (Figure 2(a)). After
partitioning the detailed path into three decom-
posed paths and applying the decomposed GP
iterations independently, several new decémposed
paths have been developed 1n each of the com-
posed network :two paths in cluster [, three paths
in cluster I and two paths in cluster Il (Figure
2(b)). Initial path flows of 7 are preserved In
each decomposed network. For composition, the
first maximum path flow common to all decom-
posed paths in each cluster is found to be 4 and is
assigned to the detailed path composed of the cor-
responding decomposed paths. The second mixi-
mum path flow available is 2 and is assigned to
another newly-created detailed path. The remain-
ing decomposed paths naturally constitutes the
third detailed path with the path flow of 1. As a
result, three different new detailed paths are ob
tained from the decomposed paths (Figure 2(c)).

cluster I

cluster II cluster III

(a)

InINIc IS

cluster 11 cluster III

(b)

cluster 1

Figure 2. Composition procedure (a) A detailed path be-
fore decomposition. (b) Decomposed paths
developed by the decomposed GP iterations,
(¢) Detailed paths after composition

V. Implementation Results

In this section, the improvement of conver-
gence speed achieved by the (original and modi-
fied) TAD-GP and the HAD-GP algorithms is de-
monstrated through mmplementation results. The
source program (s written in C and run on a SUN
4/370. Figure 3 shows a 52-node network partit-
ioned into four decomposed networks. Every link
has a capacity of 50 except that inter-cluster tr-
unks have 80. Two sets of OD pairs dre generated
sone has 100 OD pairs and the other has 60 OD pairs.
Each set randomly generates traffic demands rang-
ing from 1 to 10 and 1 to 15 with the average of 4.
92 and 7.62, respectively. The ratio of inter-clus-

ter to intra cluster OD pairs is 40/60 for the set of
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100 OD pairs and 1s 40/20 for the set of 60 OD

pairs.

Figure 3. H2-node network.

Four algorithms (ORD-GP, original and modi
fied TAD-GP., HAD-GP) are applied on the same
network. For the HAD GP algorithm, AVIL.Cs fot
the A/D step is first estimated. Both the (original
and modified) TAD-GP and the HAD-GFP algon
thms start directly with the A/D step without
running the detailed G iterations. The A/D step
in the HAD GP algorithm is followed hy the )/(
step. Then the control of both algorithms returns
to the detailed GP iterations 1t necessary., A con
stant step size is used for all of tour algorithms.
We choose 0.1 for the detailed GP 1terations, 1.0
for the (original and modified) aggregated GP it
erations and 0.3 for the decomposed GP iterations.
These values are the maximum allowable step
size for each algorithm to avold any undesirable
behavior (oscillation or divergence etc.) The ag
gregated and decomposed paths arc allowed to
shift larger amount of flow at one time than the
detailed paths. The larger step sizes used for the
A/D and D/C steps are one of the main advant
ages by which the convergence of the aggregated
and decomposed GP iterations can be acceler
ated.
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Table 1 through Table 6 show the implemen-
tation results for each set of OD pairs generated
(the ratio of inter-cluster to intra-cluster OD pa-
irs are indicated inside the parenthesis). For per-
formance comparison, we measure an average
CPU time spent to run each algorithm, the num-
ber of iterations required for convergence and the
final value of objective function (average net

work delay). For each measurement, we run each

Table 1. CPU time (40/60)

original  © modified
ORDGP  TADGP * IADGP | HADGP
140 98 3.6

Table 2. Number of iterations (40/60)

[ original ‘mudlfled\
 ORDG Pil AD (,}”IAD(,Pl HAD GP
detaited GP 5 [w £ 5 ‘ 1

aggregated GP 2 } 3 1
7{cluster 1}
[Bicluster 1)
8(cluster [
7{cluster N}

disaggregated GP

Table 3. Average network delay (40/60)

‘ orginal [ modified |
ORD GP \ IAD-GP = TAD GP HAD-GP
| 51l SL95 0 5494 1 GBS
Table 4. CPU time (40/60)
original ¢+ modified
ORDGP  TAD-GP ‘ [AD GP  HAD-GP
s @a | oes | a3

Table 5. Number of iterations (40/60)

original \modlﬁed‘
ORDGP TAD-GP '1AD-GP | HADGP

i
|
|
I
t
|
i

detailed GP 53 - 39 . ¥ e i
aggregated G P,,, - ?\ T L 9 # 9
disaggregated GP | : ‘ 7(cluster 1)
1 ; 7(cluster 1)
N{cluster )
; 1&7( luster IV)
Table 6. Average network delay (40/60)
" original | modified |
ORDGP  IADGP | IADGP | HADGP
TR0 | 7243 7154 | 76.03
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of four algorithms 10 times and take the average
on the results.

In terms of CPU time, the improvement of con-
vergence speed by the HAD-GP algorithm ranges
approximately from 4 to 20 folds over the ORD-
GP algorithm while the (orginal and modified)
[AD-GP algorithm improves only by 1.3 to 1.5
folds, (Table 1 and Table 4). From the above re-
sults, the HAD-GP algorithm is much more use
ful when the network is initially overflowed by
the shortest path routine (Table 4 through Table
6). We also observe that the modified IAD-GP al-
gorithm performs better than the original IAD-
GP algorithm, especially when the network 1s in-
itially overloaded. In this case, the original ag-
gregated GP iterations converge faster than the
modified aggregated GP iterations. Instead, the
disaggregated routing solution from the original
A/D step is farther away than that of the modi
fied A/D step sc that more detailed GP iterations
are needed to reach the global optimality.

Let us consider savings of computation time in
terms of the number of iterations, The main bur-
den in a GP iteration i1s to find the shortest pa-
ths, taking O{n*) times. In Figure 3, the number
of nodes in an aggregated network or a decom-
posed network is about one-forth the detailed net-
work. Thus 16 aggregated and decompesed GP it
erations correspond to one detailed GP iteration.
Compared with the ORD-GP algorithm, the HAD-
GP algorithm improves the convergence rate by
up to 10 folds while the modified [AD-GP algor-
ithm improves by 1.5 folds even considering the
overhed due to the A/D and D/C steps (Table 5),
The modified IAD-GP algorithm also outperforms
the original one by approximately 4 detailed GP
iterations,

The average network packet delays evaluated
at the convergence are also shown in Table 3 and

Table 6. The difference between any pair of the
algorithms falls within 5% of each other. Thus, it
can be said that the HAD-GP algorithm improves
the convergence speed significantly without sac-
rificing the optimality provided that the paramet-

ers are properly chosen. Furthermore, if the HAD-
GP algorithm is implemented in a distributed
way, we can expect more drastic savings of com-
putation time in terms of CPU time and the num-
ber of iterations. For example, the overall number
of decomposed GP iterations in the HAD-GP al-
gorithm reduces to 27 in Table 5 because we only
consider the maximum number of iterations am-
ong the decormposed networks. The distributed
HAD-GP algorithm would reduce again the num-
ber of iterations as well as the CPU time required
for convergence,

VI. Summary

We have proposed the modified TAD-GP rout-
ing algorithm combining the GP algorithm with
the A/D step. However, the (original and modi-
fied) TAD-GP algorithm turns out to be inef-
ficient under certain situations : for example, if a
cluster i1s heavily congested and initially intro-
duces some unbalanced traffics to the network,
the A/D step does not provide the significant im-
provement of convergence speed. In addition, the
disaggragated routing solution of the IAD-GP al-
gorithm may be too far away from the global opti-
mal routing solution. The main reason is that the
A/D step only tries to solve the ORP from the
view-point of inter-cluster path flows.

To overcome this problem, we proposed the
HAD-GP algorithm combining the modified [AD-
GP algorithm and the D/C step. The D/C step
divides a large problem into a number of smaller-
size subproblems and solves them separately. Sol-
ving those individual subproblems simultaneously
can provide tremendous savings of computation
time provided that the subproblems are loosely
coupled. The HAD-GP algorithm views the rout-
ing problem from the higher level (A/D step) as
well as the lower level (D/C step) and converges
to the optimal routing solution faster than either
the ORD-GP algorithm or the (original and modi-
fied) IAD-GP algorithm.
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