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Algebraic Geometric Codes and Subfields of
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ABSTRACT

Lke the Hermitian function field over /(g

), those subfields defined by -+ y=x* where s

divides ¢+ 1 are also maximal, having the maximum number of places of degree one permissible by
the Hasse-Weil bound. Geometric Goppa codes(or algebraic geometric codes) arising from these
subfields of the Hermitian function field are studied in this paper. Their dimension and minimum
distance are explicilty and completely presented for any s with m<n where = is the length and m is

a parameter that governs both dimension and minimum distance of the code.
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1. Introduction

In a series of papers ([5]-[8]), Goppa discovered
an amazing connection between the theory of
algebraic curves over a finite field F(g) and the
theory of error-correcting block codes’ over (1F(g).
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His idea generalizes the well-known construction
of Reed-Solomon and classical Goppa codes. Fol-
lowing his idea, Tsfasman. Vladut, and Zink [14]
used modular and Shimura curves when ¢ is a
perfect square, and showed in a landmark result
that there is a sequence of codes which exceed
the Gilbert- Varshamov bound for ¢ > 49. There-
after, these codes are called geometric Goppa
codes or algebraic geometric codes (AGC).

A particularly interesting class of geometric

www.dbpia.co.kr



i/ 7 ek 3 92F Hermitian 8R4 o) L5 a)

Goppa codes are codes arising from the Hermitian
function field, The large length of these codes in
comparison with their alphabet size makes them
attractive over conventional Reed-Solomon codes
having the same alphabet. Tiersma {13] studied
these codes in more detail and provided a clear
description of their dual codes.

Stichtenoth [11] generalized and simplified the
results of Tiersma by working with an isomorphic
curve having only one point at infinity, Codes of
length #=¢" and any dimension k with 0 < k < ¢*
over GF(g°) were considered by him, In particu-
lar, the exact minimum distance of these codes in
the range that 0<m<q¢'—¢* or m=0(mod gq)
with m<{g*(where m is a parameter that governs
both dimension and mimimum distance of the code)
was determined in his paper. The true minimum
distance for ranges of the parameter m not
covered in [11] was completely determined by
Yang and Kumar [15]. The generalized Hamming
weights of these codes were also studied by Yang,
Kumar, and Stichtenoth [16].

Like the Hermitian function field, those subfields
defined by -+ y=x* where s divides ¢+ 1 are
also maximal, having the maximum number of
places of degree one permissible by the Hasse-Weil
bound. Some partial results on minimum distance
of codes arising from these subfields were
obtained by Garcia, Kim and Lax [12] using con-
secutive Welerstrass gaps.

In this paper we provide complete results on
the dimension and minimum distance of these
codes with m<{n, where »n is the length and mis a
parameter that governs both dimension and mini-
mum distance of the code

[I. Geometric Goppa Codes

Origianlly, Goppa constructed algebraic geometric
codes using differentials of a fuction field and the
residue map, which are now well-known to be the
duals of algzbraic geometric codes using functions
of a fuction field and the evaluation map. The
presentation here will adopt the function/evaluation

viewpoint, See (9], [10], [12] for more details.
Let /K be an algebraic function filed of genus
g over a finite constant field A (see [1], [10],
[12] for example). Let (/|7 =1,2,---,n! be a set of
places of degree one in F/K. Let ¢ and D be
divisors of F/KA such that D=pP+p,+.-+ P,
and supp(G) Msupp(/) =¢ where supp(¢) and
supp(/}) denote the supports of ; and D) respect-
wely. Define the vector space £((;) as follows :

LIG): = feFI(f)=—Gor f=0

where (f) is the principal divisor of f. For a divisor
4 of F/K, denote by dim.{ and deg.4 the dimension
of £(4) over K and the degree of .{ respectively.
Now conssider the AK-linear evaluation map ®
given by

@ LG)—> K"
TP, fLP), - F(P)). (1

Then the geometric Goppa code (or algebraic
geometric code) associated with two divisors D
and ¢ 15 defined by

CelD, ;) = Image of o= p(L{())). (2)

Here we assume that deg(; {» for simplicity. The
following proposition is well-known [9], [12].
Proposition 1 (o(D. ) /s an [n k, d] code with

parameters
k=dim(; and d = n—deg(.

Furthermore, if degts > 2g—2, then k =degG +1—g.
lll. Some Subfields of Hermitian Function Fields
Let K be a finite field K= GF(4*) (¢ =a power of
some prime p) and F = K(x, ) be the function
field defined by

F=HK(x, y) with ¥+ y=1x"and s|g+1 (3)

(see [3], (4], [11], [12]). If s=g+1, then F/K
419
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1s called the Hermitian function field over K. If s
{g+1, then FF/K is isomorphic to a subfield of
the Hermitian function field and we shall there-
fore refer to it as a subfield of the Hermutian
function field. The genus ¢ of the function field
F/K is given by g=1(¢—1)(s—1)/2 and the div
1sor of the differential dx can be shown to bhe

(dx) =1(2g—2)0, (1)

where (), is the common pole of x and y.

The places of degree one of /°/K are given as
follows : The place (), 1s one of them. l.et x € K.
Note that 77+ 7 = " has a root in K if and only if
2 € GF(g). For any x with «* € (;I'(g), there are
exactly ¢ distinct solutions in A of 77+ 7 = x*
Let ['* be the subgroup of order (g~—1)s of the
multiplicative group A* and let [7:={*J{0.
Then for x€ K, »*€ ;I'{(¢) if and only if x€ (",
Hence the number N of places of degree one in
F/K is

N=gqg- |[U|+1=g(1+(g—1)s)+1. (5)

Since N=14+¢*+29q=1+ g +qgl¢g—1)(s—1),
/K achieves the Hasse-Weil bound and is there
fore a mavximal function field.

We define P, ; to be the common zero of x—x
and y—f whenever « € (" and € K are such that
pi+p=2" Then the divisors of x—x and y—f
are as follows :

Yoy g0, ifxel

x—g) = Be R,
¢ 2) BO+Hp - s

R,=qQ.

) (6)
if € NA\U

where R, is a divisor of degree ¢ in F/K depending
on x whose support does not contain any place of

degree one and

SI)()V /;AS(), R if /f'l -+ [f = (),
(y—p) = «

1€ N,

o petfi

D,y sQ. IR

For each integer m > (), the set 3(m) given by
420

Blm) . =ix'y0<2, 0<7<qg—1, tg+js <m (8)

1s a basis of £(m(), ) over K.
let s«t:=¢g+1. From here on, we will assume
that

Gi=mQ,and D=3 YD, Q)
160 fER. . :
RO+ xn

Consider the geometric Goppa code (D). )
associated with two divisors 1) and ¢, Thenp( D,
;) 15 a hnear code of length »: =¢g(1+(¢g—1)s).
To simphify notation, let

s

ot 70D mQ ), (10)

Let d(c,) denote the minimum distance of the
code (7, Note that (', 1s a linear code of length »
g(1+{g--1)s and that if my <wm., then ¢, S
(.o and therefore d(¢ ) =2 d((,,.).
Consider the function « defined by w: =11,

(x—2). Then we have
() = D—no, (11)
and

U= x - r] (xvoz)*‘x(x"’ ”“*1)?;(”“’ “\'"’X.
ye

An integer [ >0 1s called a gap number of
«. if there is no function f € /- such that f &
LU ) LU-1)0,). Otherwise, { is called a pole
member 0f (3, Let S be the set of all gap numbers
of (.. From the above basis of £(m(,) given in

(8), 1t 15 easy to check that

S=5US, (12)
where
Si=lagtes+Hhl0<a<s—20<c<t-2at1<b<s—1i

and
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Sy=lag+ (t-1)s+bl0<a<s—3atl<b<s—2.

This gap sequence plays a central role in dete-
rmining the dimension and minimum distance of
the ocd C,, as in the Hermitian case [11], [15].
Remark 2 (a) If t==1(j.e., s=¢+1) then F/K is
the Hermitian function field and S =lag+bl0 < a
<qg—2,a+1<b<qg—1}. In particular, the length
n of the code C,, is #n=¢" in this case.
(b)If t=g+1(ie.,, s=1) then F/K is a rational
function field since F=K(x, y)=K(y). In this
case, (). does not have a gap number and n=g¢*.
The dimension of the code C,, is easily deter-
mined from the above gap sequence given in
(12). Let

Im):={<mli=ig+7s,i =00< 7 <g—1} (13)

Any integer m can be uniquely expressed as
follows :

m=aq+cs+bwitha>00<c<t~2 and<b<s—1
(14)

or

m=aq+(t—1)s+bwitha=0,and 0<b<s—2.
(15)

Using this expression and the basis of £(m () in
(8), it is easy to calculate |I{m) |, that is,

[Hm)| =
aatl) t+c(a+1)+minle, B+1 for 0<m<2g-2,
m+1—g for m»2g—2.
(16)

Proposition 3 Assume that 0 <m{n=q{{g—1)s+
1). Then the dimension of C,, is given by

dimC,, = |/{m)].

Proof. It is obvious because
dimC,, =dimL(mQ. ) = |I1(m)|

for 0 < m<n. ]

IV. Minimum Distance of the Code C,,

In this section, we will completely determine
the ture minimum distance of the code (', defined
in (10) for any m(<{#n). In the case of Hermitian
code, Stichtenoth [11] determined the exact
minimum distance of €, for 0 < m< ¢*—¢*. Yang
and Kumar [15] determined it for any m with ¢*
—g*<m=<q'~+q*~q—2. If s=1, then F/N is a
rational function field over A, and ', is therefore
MDS(maximum distance separable).

From here on, we focus on the case that 1{s<{gq
+ 1{equivalently, 1<{¢<{q+1 since st =qg-+1). Since
n=q(1+(g—1)s), we have ¢?{n{qg* in our case.
By Goppa’s lower bound, we have

dic,) =2n—m,

For any integer m > 0, let m be the largest pole
number of (), with m <m. Clearly, £(mQ,)=
£(m Q.). Therefore, we can assume in what
follows that m 1s a pole number of (), without
loss of generality,

Theorem 4 Assume that 0 < m<n=q(1+ (g—1)s)
and that is a pole nwumber of Q.. If n--m is a pole
number of Q. then

dic,) =n—m.

Proof. We divide our region into three cases.
Case (a). m=n—(s~1)g=q((g—2)s+2):
Choose 7:=(¢g—2)s+ 2 distinct elements a;,---,a;
€ U, Then the function

fi=I1 G-a)e L)

421
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has exactly 7zg = m distinct zeros in supp{(/?)). This
implies that d(C,,) < n—m, so we are done,

Case (b). m{n—{(s—1)¢g=q{(g—2)s+2) : Since
m is a pole number of ,, we write m= iqg+ js
with 720 and 0<j<q¢g—1. Thus i< (¢g—2)s+1
=(g—1)s+1—s. Let A:=la€l'lx*# 1i. Then
|4l =(g—1)s+1—s=7 and we can choose «,,
-, € A. The element

has #¢q distinct zeros in supp(/?). Next we choose J
distinct elements f,,---,8; € K such that ¢+ =1
and let

z,: :fll v—5,.

Note that z, has ss distinct zeros in supp(D)).
Then z: =22, € LOm(,) has exactly m distinct
zeros in supp(/)).

Case(c). n—(s—1)g<{min: Wehave 0{n—m-
(s—1)q{q{(g—2)s+7?2). Since n—m is a pole
number of (), by assumption, there exists an
element z€ L({n-m)(.)with the divisor (z)=
E—=(n—m)(Q, where 0 < E <D and degk =n—m
The element #:=:x'¢ " Tl—x &} has the div

isor (&) =D nQ., hence
(fz) = (D—E)~m{.

Hence, the codeword corresponding to u#/z €

r

L(m(),) has weight n—~m. []

Using the gap sequence in (12), it is easy to
check that n—wm is not a pole number of ¢, if and
only if

m=n—aqg—cs+b with 0<a<s—2, Il<c<it—1,
andl<b<s—1—a

or

m=n—aqg—ts+bwith(0<a<s—3 and2<b<s—1—a

where ts =g+ 1.
422

In the case that »—m is not a pole number of
()., the minimum distance of ¢, is given in the
following two theorems,

Theorem 5 /f m=n-ay—cs+bwith ) <a<s—2,
l<e<t-lund 1 <b<s—1—a then

dC) = n—m+b-aqg+cs.

Proof. Note that m>n—ag—cs and that both »
—aq—cs and aq+cs are pole numbers of (0,. By

Theorem 4 we have
dic,) <d(c, ., ) ~ag+tcs.

In order to prove the equality, it suffices to show
that any element f € £0m(),) has at most m—¥b

‘n—aq —cs distinct zeros in supptl)). Suppose
there is an element f € £(m(,) such that f has
m’ distinct zeros in supp{/)) where n—ag—cs+1
<m <n—ag—cs+b-m Then there exisits an

integer m” with m < m” such that
(Hr=r+]-mq,

with 0< <D, deg(l)==m' [=0, supp(f} D
supp() € suppl(l), O, % supp{/), and j: == deg(])
=degl/) =m" -m’ Let u: =x" "'l —x Then
/) =D uQ, ~E~[+m0,

S AD—E) =]~ (n—m"Q,.

Now let A be the algebraic closure of K == (g*)
and consider the constant field extension ['=:
FK of IF/K. Then {7'/K has the same genus and
the same gap sequence at (),. The degree of any
divisor in I'/K is preserved in F'/K (see [12]).
Our aim is to show that even in the extension
field 7, such a function #/f with the divisor as
given above does not exist. In I<"/K. all places
texcept ¢, ) are of degree one and correspond to
points (x, f#) with coordinates in K . Given a place
of degree one (a point) P, , contained in the sup-

port of J, we consider the the function y—f
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having P, ; as a zero, Since (y—f)=20P,,+1~—s
¢, where g+ =2 />0 and () & supp(l), we
get Py~ —/+s(,. Replacing each place of de-
gree one in the support of / with an equivalent

divisor in this way, we get
J=—R+js0,

where R = () and () & supp(R). Thus
(u/ ) ~D—E+ R~ (n—m"+ js)0,

where D=L+ R =0 and ( & supp(D—1) Usupp(R).
Let m":=n—aq—cs+b"and m": =n—ag—cs+5b’
where 1 <6< b”"< b, Then

n—m'+js=aqg+cs—b"+js
=aq+ {c+j—1)s+s—b"

write ¢+ 71 :==kt+{ with 0<{<i{—1 and k >

0. Note that 7>k since t>] and 1<c<i—1.
Thus

n—m +js=aq+kis+is+s—-b"
={(k+a)+is+(s—b"+k).

Here we have
s=b"+k=2s—(s—1—-a)+k=k+a+1)k+a
and

s—=b"+k=s-b~(j-k)<s—-b <s—1.

In particular, if /=¢—1, then 7>k and
k+als—b"+k<s—b'—-1<s—2.

This implies that #—m"+ js is a gap number of
)., and we get a contradiction to our equivalence
of (#/f). Hence, there is no function f € LmQ,)
such that f has exactly m’ distinct zeros in supp(D)
with n—ag—cs+1<m <m 7]}

Theorem 6 Ifm=n—ts—ag+b with (<a<s—3,
and 2<b<s—1—a, then

dC,)=n—-m+b-1=ts+ag—1=(a+1)q.

Proof. The same arguments in the Proof of The-
orem 5 holds except that

n—aqg—tst+2<m <m sm—=n—aq—is+b
where 2<b<s—1—aand 0<a<s—3. Then

n—m'+js=aqg+its—b"+js
=aqg+ (j+t-1)s+ (s—b").

If 7==0 then s—2=s—b"2s—(s—1—a)=a+1)
a, and therefore n—m"+ js is a gap number of ., .
If =21 then write j+¢—1:=kt+/ with0</<
t—1 and k = (). Then we have

n—m'+js=aq+kis+is+s—b"=(a+k)g+s
+(s—b"+k).

Here
s=b'tkzs—(s—a~1)+k=at+k+1>atk
and

s=b"+k=s5-b'~(j—k)<s—b <52

since j = k. This implies that n—m"+ js is a gap
number of (). Hence, we have a contradiction. [}

V.. Conclusion

An interesting family of geometric Goppa codes
are studied here, which arise from some subfields
of the Hermitian function field over GF(g°)
defined by »+y=x° where s divides ¢-+1.
These codes have large length n=¢q((g—1)s+1)
compared with their alphabet size ¢°, so they may
be more attractive than the conventional Reed-
Solomon codes. Their dimension and minimum
distance are explicitly and completely given for
any m{n where m is a parameter that governs

423
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both dimension and minimum distance of the code
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