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ABSTRACT

Modulation type classifier based on statistical moments has been successfully employed to
classify PSK signals. Previously, the classifier developed utilizes the statistical moment of samples
of the received signal phase, which may be difficult to extract from received signal. In this paper
we propose a new moments-based classifier to classify PSK signals by using the moments of the
demodulated signal for PSK. The demodulated signal can be easily extracted from the conventional
demodulation of PSK. The evaluation of the performance of the proposed classifier for PSK signals
has been investigated in additive white Gaussian noise environment using the exact distribution of
the demodulated signal. The performances of classifier in terms of probability of misclassification
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were evaluated. We found that the coherent system classifier gave 4dB improvement for BPSK
and 3dB for QPSK over noncoherent system classifier, when the probability of misclassification is

107% and n equals to 4.

1. Introduction

Modulation type classifier plays an important
role in some communications systems such as sig-
nal conformation, interference identification and
monitoring. To obtain a rapid report of the modu-
lation type of a received signal in modern dense
communication environment, automatic modu-
lation classification technique becomes necessary
and therefore has recently received much atten-
tion[1]-[3].

According to an increasing demand of a digital
communication, many kinds of modulation types
have been proposed and made to practical use re-
cently. However, these studies are on the as-
sumption that the input signal type such as modu-
lation type, carrier frequency and symbol rate are
known at the receiver. Therefore, the demodu-
lation can not be done when the input signal type
1s not known to the receiver as prior information.

Considering an increasing demand of the com-
munication and the diversification of the com-
munication methods, it can be easily expected
that the communication system whose signal type
is not known to the receiver as prior information
will exist in the near future, We assume that the
transmitted signals consist of continuous wave,
BPSK signal and QPSK signal,

Preliminary we review the modulation classifi-
cation method which uses the statistical moments
of samples of the received signal phase described
in [6].

Let the received signal r(t) consis of transmit-
ted signal and additive white Gaussian noise in
the form

r(t) =s(t) +nlt) 99

s(t) is M-ary phase signal and n(t) is Gaussian
noise with mean zero and variance ¢
The phase bearing information of s(t) can be
considerd as
2n

Oy =— (m—l)‘

T m=1,2 .M (2)

The extracted phase is then sampled, the i-th
phase sample (i) can be expressed as

(i) = guld) +¢'(d), <l y(i) <= (3)
#m(i) is the i-th sampled phase component of s(t)
and ¢’(i) is the random phase component due to
n(t). The phase component of r(t) may be ex-
tracted by means of 1-Q channelization technique.
Observe that M =1 corresponds to the continu-
ous wave case, M =2 corresponds to BPSK and
M =4 corresponds to QPSK.

Let fo(#) be the probability density function of
the phase fluctuation due to additive white Gaus-
sian noise, then the probability density function of
fe(y : M) becomes as follows assuming the equi-
probable M phase states [6],

1 X 2
fold M) =— ¥ fyly =5 (m=1)},
m=1, 2, -, M (4)

The n-th moment of the phase of a received sig-
nal is

Ml M) :jﬁ W Fo(w s M) dy (5)

This values of moment are used in evaluation of
the mean and variance of the probability density
function of sampled moment.

The sampled moments are defined as
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E(M)=—1L— j:j v (i, M) (6)

where L is the number of samples taken from the
phase of received signal. Since the samples are in-
dependent identically distributed, the probability
density function of fi:{m.(M)} approaches to the
Gaussian dendity by virtue of the central limit
theorem,

It can be shown that the mean and variance of
S {ma (M)} become respectively

un(M) = ma(M)

Man (M) — ma(M)
L

on(M) = (7)

Then there remains formulation of modulation
classification problem as stated in section 3.

The classifier developed in [6] for coherent sys-
tem utilizes the statistical moments of samples of
the received signal phase which is difficult to ex-
tract from the received signal. In this paper we
consider modulation classifier for coherent and
noncoherent systems by using the statistical mo-
ments of samples of the demodulated signal. We
present a Bayes classifier to classify the PSK sx
gnals using the exact probability density function
of demodulated signal. A Bayes test is based on
two assumption, The first assumption is that a
priori probability which represents the observer
information about the source before the exper-
iment conducted is completely given, The second
assumption is that a cost is assigned to each poss-
ible course of the action. Then the Bayes cri-
terion of minimum average cost results in a test
of the likelihood ratio. The classifier proposed
utilizes the sampled moments of demodulated sig-
nal which can be used as a sufficient statistics to
recognizes modulation type of PSK signals. A hy-
pothesis test is formulated based on this moment.

1006

I. Developement of classifier model

The received M-ary phase signal waveforms may
be expressed as[4]

s(t) =Re {u(t) expl j(2nf. t+2_1v7; (m—1)+y) 1,

m=12 -, M (8)

where Ref{ - } denotes the real part of complex-
valued quantity in the bracket, and ¥ is an arbi-
trary initial phase which can be set to zero. f. is
the carrier frequency and 2z(m—1)/M represents
the information bearing components of the signal
phase. The pulse u(t) determines the spectral
characteristics of the multiphase signal. If u(t) is
a rectangular pulse of the form

u(t):\/—zi, 0<t<T (9)

where T is symbol duration and E is symbol en-
ergy, the signal waveforms may be expressed as

i —
s(t)=\/*2:f— Amecos2n f .t — 2—7{5 Amssin2mn f. ¢

(10)
where
2n
Am:COS[—X/I— (m—-1)+y], m=1,2, -, M
. 2n
Ams:sm[v(m—l)*f“l//], m=1,2, -, M
(11)

Thus, the signal given by eq. (10) is viewed as
two quadrature carriers with amplitude Am and
Ams, which depend pn the transmittéd phase in
each signaling interval. M =1 corresponds to the
continuous wave(CW) case, while M =2 corresp-
onds to binary PSK(BPSK) and M =4 corresp-
onds to quadrature PSK(QPSK). The general form
of the optimum demodulator for detecting one of
M signals in an AWGN channel is one that com-
putes the decision variables
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U,"=Re{j:rmu'(t)exp[—j(—i} (m—1)+y)]dt}
(12)

where #*(¢) is the conjugate of u(t), and selects
the signal corresponding to the largest decision
variable, Having described the form of the modu-
lator and demodulator of PSK, we consider the
probability density function of the phase fluctu-
ation due to AWGN which is given by[4]

-1 _ 1l /R  pein?
fold) = o exp(—R) + 5 \/: exp(—Rsin’g)

cosgll+erf (VR cosg)], —~<g<n
(13)

where R is signal-to-noise ratio(SNR) and erf( - )
is error function,

By applying the rule of transformation of the
random variables, the probability density function
of x==cos¢ can be expressed as

_ exp(=R) / R
Sl = nV1-x2 + n(l1—x?)

exp[ ~R(1—20)1x[1+erf (VR®)], —1<2<1
(14)

Figure 1 shows f(x) for several values of R. The
pdf of x has the peak at x=1 because cosg occurs
more often near ] than any other values. It is ob-
served that fx(x) becomes more peaked about
x=1] as R increases.

The pdf of y=sing, gv(y), is expressed as

__e_)t:_p_(_—_R_)_ + R exp[ R y2]
/l_yz T

erf(vVR(1—y) ], ~l<y<l (15)

Similarly, gv(y) is sketched in figure 2, which
will be used later in constructing the pdf of QPSK.
It is observed that gy(y) becomes narrower and
more peaked about y=0 as R increases, The pdf
of QPSK is obtained by adding that of x=cos¢

P
.- R=.3
--R=:7
fy(x) 671 -
x(x) Cr=ho

(dB)

XY

o :
-1.0 -0.5

Fig. 1. Probability density function of x =cos¢ (Coher-
ent System)

2.0 T ¥ T

gy (y) 10

Fig. 2. Probability density function of y =sin¢ (Coher-
ent System)

t=kT

X LPF — >

Z=1cosd

toos(w,t+4;)

tcos(®,t +4;)

Fig. 3. Block diagram of differential BPSK receiver
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and y ==sing with appropriate weights.

The block diagram of the differential demodu-
lator for BPSK system is shown in figure 3. 4
and @, are the phase errors due to AWGN and
have the pdf of eq. (13). We assume that ¢, and ¢
are independent. 6 is the phase difference and de-
fined by

0=¢—¢» (16)
The pdf of 8 is given by[5]
1 R 4 R
fo(8) =— exp(—R)[1+— i (sina + cosa)
2n 2l
exp(R sinacosf)dal, —n<¢g<n (17)
For the same manners, we can obtain the new

pdf of z=cos# from the transformation of ran
dom variables

_R R "
fol) = 2RLR) R " (sina+2)
nV1—2? 2 Ny
exp(Rzsina) da], ~l<z<] (18)
12§ e e S
10
8 - R;T
- R=- 3 ’
R= 7
rZ(Z) ® R = 10 ;:_‘
(dB) i
—_— 1
4r ‘ s
2
0 tas =
~1.0 -0.5

Fig. 4. Probability density function of z == cos () (Nonco-

herent System)
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Figure 4 shows that the pdf f2(z) becomes more
peaked about z=1 as R increases, Similarly the
pdf of w ==sinf, gw(w), is expressed as

exp(—~R) Rexp(—R) i«
(w) = s
Ew nv1—-w* 4in 0

sina — V1= w! Rp—
—1——“——#—;—— exp{ —Rsinav1-w?)da
Vi—w?

4 Rexp(—R) =« smaﬁ-x{il—?

4r S

—l<w<l
(19)

exp(Rsina v1-w?) da

The pdf of w=sin0 is illustrated in figure 5 and

gw(w) becomes narrower and more peaked about
w=={) as R increases.

15 I —
T R T
R~
R= 3
1o}
[
By (w) ! 5
\ v
! B
) P S R
0.5 N ,"“_."——"—f-r*‘—“_::—""\ .
'J
00 bemrczl - i H -
-1 0 -0.5 0.0 0.5 1.0

Fig. 5. Probability density function of w = sin@ (Nonco-
herent System)

IlI. Calculation of moments and misclassification
probability for coherent system

The n-the moments of the demodulated PSK

signal is given by

m,,:[ll X f(x, M) dx (20)
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First, we consider a single random variable x=
cos@, characterized by its pdf f(x) given by eq.
(14). This case corresponds to CW signal, The de-
rived general expression of moment for CW case
is [ see Appendix A ]

1 n
= exp(—R) ( r[—é- +—5}
Vr r[1+%]
2k+1Rk+1r[% +k+-%]
+¥ }

k=0

(2k+1)!!r[z+k+%]

. n = even number

m,=exp(—R) VR 1F1[1+%,% +%» R]
r{1+—;—]
—5— 5 D = odd number (21)
F[E +E]

where (2k+1)11==1-3-5 -+ (2k+1) and Fi{a, b,
z ] is the hypergeometric function and defined as

follows
_ I(b) 1
Fila, b, z]= r(b—a) a) jo
exp(zt)t2~1(1—t)P72 14t (22)

In the similar fashion, the general expressions
of moments for BPSK and QPSK signals can be
expressed in the closed form [ see Appendix Al

(1)BPSK

1 n
exp(—R) ! F[E +E}

my =
Vu r[1+—’21]

2k+le+1r[§_ +k+ 2 ]
2 2 )

(2k+1)11 I‘[2+k+%]

s

o+

-

=0

. n == even number
my =0 : n = odd number (23)

(2)QPSK

1 n
n— +=1
{2 —2—2_]

n
1"[1+—2']

mn=—l~ exp(—R)
2 Jn

= 2k+le+l
X

k=0

+

(2k+1)!!1‘[2+k+%]
3 n 3 1 n
(T 2+k+ > 1411 2+k]F[ 2+3]/ﬁ)

. n = even number
m, =0 : n = odd number (24)

We will follow the modulation classification scheme
of reference[6] in applying the moments of eq. (23),
(24). The n-th sampled moments, denoted by M,
are definde as

T X M) (25)

1
Ma= T

where L is the number of samples observed. Sin-
ce we can assume that samples are i.1.d. by virtue
of the central limit theorem, the pdf of M, ap-
proaches normal distribution as L becomes larger.
Based on this assumption, the probability density
function of M, denoted by fuma(M,) is completely
described by its mean and variance. That is

fur, (M) = N(n(M), a2(M)) (26)
where
un(M>=E[iL J}: € M) ] =ma(M) (27)
M) =[5 T B[ M) ~ma(M)F]
2
_ mp (M) —mi(M) o8)
L
1009
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From eq. (27), the mean of the sampled moment
1s the same as the ensemble moment. The sam-
pled moment can be used as a sufficient statistic
to recognize the modulation type of PSK signals.

The next case of interest is one in which we
must classify one of M hypotheses using the sam-
pled moments, we shall only consider the case for
M =1, 2, 4. Under the 3 hypothese, we have

Ho : N(ua(1), 63(1)), CW
Hi : N(un(2), 62(2)), BPSK (29)
H; : N(un(4), 0a(4)), QPSK

The Bayes criterion leads to a likelihood-ratio test
which is defined by

N({M), oe(M)) K
N(m(2M), a2 (2M)) <

(30)

where k is a nonnegative constant. The design of
a Bayes test requires knowledge of the costs and
a priori probability. If we assign no costs for mak-
ing right decision and equal costs for making
either type of wrong decision, the likelihood-ratio
test becomes minimum probability of error re-
ceiver. With this special cost assignment and equ-
al a priori probability, k becomes unity. The thre-
shold A,(M, 2M) for n-th moment classifier can
be easily derived from the eq. (30) with k=1.
Based on Gaussian assumption, it can be derived
that the threshold for the n-th moment classifier
1s

a2 (2M) (M) = a2 (M) 4. (2M) +6,(M) 0, (2M )5
a2 (2M) ~ i (M)

(M, 2M)=
(31

where

=V [ (2M) = (M) P +2[0%(2M) = 02(M) ] In[02(2M) /5n(M) ]

decide BPSK
decide QPSK

if My > 2,(2,4)
if My <2a(2,4)

1010

P{E[H1}

SNR(dB)

Fig. 6. Probability of misclassification for BPSK (Co-
herent System)

P{EJH2)

SNR(dB)

Fig. 7. Probability of misclassification for QPSK (Co-
herent System)

Having formulated the decision rule of classifi-
cation for BPSK and QPSK, we evalutate the
performance of misclassification an AWGN en-
vironment. The probability of misclassification gi-
ven H, and H: are respectively

P(E[H;) =P(M,< 1(2,4))

www.dbpia.co.kr
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P(E|H;) =P(Mn > 1.(2,4)) (33)

We shall demonstrate how the algorithm will
perform in discriminating between BPSK and
QPSK. Here L is assumed to be 128 samples. Fig-
ure 6 and 7 show the average probability of mis-
classification as a function of the SNR with the
order of moment as a parameter. As in increases,
the value of the moments becomes closer and
hard to distinguish.

IV. Calculation of moments and misclassification
probability for nonoherent system

From eq. (20) with f(x) given by eq. (18), the gen-
eral expression of moment for CW case becomes
[see Appendix B ]

exp(-R)F[—l- +-2]
— 2 2 1
my = n +“E
J;r[1+—2—]

Rk+11-[1+.£{_][-[_1_+_l£+_rl]
ey 2° "2 22
exp(-R) T 3k k . n
k=even ‘ 2 - - _*
k.n2+2ml+2+2]

, n Rk+*r[—1~+5m1+-‘§+3]
+~—2~ exp(—R) ¥ .
2

e k'm+ m +— +2]

. n = even number

. RO+ S I 5+ 2]
“‘"+Ee"p P Pa—
k.IT7§“F75]ITl+”E'+72]
. . Rk+‘ni+3]m+—‘2‘+£]
+ exn(-R) 3 :
o k'r{1+ ]11 +2+—]
: n= odd number (34)

In the same manner, the derived general expres-
sions of moments for BPSK and QPSK cases are
[ see Appendix B]

(1)BPSK

1 n
exp(—~R) I'{ > + 2]

M= - +
s/;r[1+—2-]
Rk+11-[.1_+l{_]1-[1+_k+.2]
= 2 2 2 2
e ki+R 2 ek gy
: 2 2 2 2
, . RSyl +‘2‘+2]
+E exp(-R) ¥ 3 k
k=even ' 2 Y I A
k.ﬂ2+2]ﬂ1+2+2]
. n=even number
my, = { ; n = odd number (35)
(Z)QPSK
1 n
exp(~R) M= +=1
_ 2 2 1
Mmn o +“Z
s/Er[1+3]
RS ]m+‘2‘+ ]
-R) ¥ .
b k'm+ i +2+ iy
SR ShE +‘2‘+—]

+% exp(—R) f 3
k.'[["z“\‘-a ][[1+—2‘ +'EJ

1 exp(—

+4J‘

i R2k+l r[ ]

2

k 1
f[l‘f"é']f[‘z‘]

{(2k')r[3+5]rtk+£+1]
' 2 2 2

on
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k  k 3
R +5 1 Mk+-]

-+ §
(2k+1)1 1 1+5 ) k2 +2)
. n = even number
my = () : n = odd number (36)

The n-th sampled moments are given by eq. (25).
In the similar fashion for coherent system, the

10 4
o
I
o
T aad §

07?

107 ®

107" - 4 Lo "

-10 -5 0 10
SNR(dB)

Fig. 8. Probability of misclassification for BPSK (Non-
coherent System)

P(EMH1)

-0 -5 o 5 10
SNR(dB)

Fig. 9. Probability of misclassification for QPSK (Non-
coherent System)
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samples are i.1.d. Therefore the pdf of M, approa-
ches normal distribution. Based on this assump-
tion faa(M,) is same as the eq. (26). The thres-
hold for n-the moment classifier is expressed as
the eq. (31). Therefore the probabilities of mis-
classification for BPSK and QPSK signals are
given by eq. (32), (33) with different moment fun-
ction. Figures 9, 10 show the probabilities of mis-
classification with the order of moment as a par-

ameter,
V. Conclusion

In this paper, a Bayes classifier to classify the
BPSK and QPSK signals employing the exact pdfs
of coherently and noncoherently demodulated si-
gnals are discussed in AWGN. The classifier util-
izes the sampled moments of demodulated signal
which can be used as a sufficient statistics to re-
cognize modulation type of PSK signals. The per-
formances of classifier in terms of probability of
musclassification were evaluated. The coherent sys-
tem classifier gave 4dB improvement for BPSK
and 3dB for QPSK over noncoherent system clas-
sifier, when the probability of misclassification is
10 * and n equals to 4. Compared with [6], we fo-
und that the moment classifier presented offered
a (1.5dB improvement when the probability of mis-
classification is 10 ® and n is 4 for coherent QPSK.

Appendix A

The n-th moment of (20) is defined by
m, |0 x'dx (A1)
To integrate the first term of (A.1), we make use
of integral formula[8] and even and odd function

properties.
. <2 v F[—-12—+n]
“u V1—x¢ dx 2ri1+n] (A.2)

We can rewrite the second term of (A.1) as fol-

low
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,F_E exo(—R) { exp(R x2) x* +1
V= *P Vv1—x°
exp(R x2) erf(VR x) x"*!
+ H (A.3)
AR
In (A.3), let A(x) and B(x) be
1 2
A(x):—e—x%E—;—) x" 1 (A.4)
—X
exp(Rx®)erf(VR x) .,
B = n (A.5)
0 i x
From the integral formula[8], we have
! — h 3.n
LA(X) de=1Fil1+5, <+, R]
n
r{ 1+~2‘] NE
3,.n
r{ 5 + > ]
: n = odd number
=0 . n = even number (A.6)

To integrate B(x), we utilizes series expression
which is gien by[7]

Qmt2ymtl(n41)!
(Zn+2)1
(A7)

erf(x) = 71: exp(—x%) ¥

T n=0

Then, inserting series expression of (A.6) into B
(x), we obtain

2
1 © 2k+lx2k+n+2R 2

B(x) = — ¥ . (A8)
YR B (kDI

The integral of B(x) 1s obtained from (A.2). There-
fore the moment expression of (21) is obtained.

Similarly, the n-th moment of (15) is defined
by (A.1). The integration of the first term is ob-
tained from (A.2). Inserting the series expression
of erf(x) into the second term, we have

exp(—R x) erf [(VR(1—x%) ]x"

2k+1

~ 2k+1 R_Z
I SNy IT)

(T=x) 51 0
(A9)

To integrate (A.9), we make use of integral for-
mulal 7],

1 n 1
F[k+7]1‘[5+—2-]

r[k+%+1]

. n == even number
== ;n = odd number (A.10)

Therefore, the closed form for the moment of (15)
can be expressed as follows

1 n
_exp(-R) fts]
v i+

( 2““Rk+11‘[—‘%+k]1"[-12—+%]

+ ¥ — = !
\/n(2k+1)!!1“[72+k+2]
. n == even number
m, =0 ; n = odd number (A.11)

The n-th moment of BPSK can be obtained from

my =[x L0 + fx(— 0] dx (A12)

where fx(x) is (14). The (A.12) leads to (23).
Similary, the n-th moment of QPSK can be ob-

tained from

mo= [ % (00 +(=x)+ gr(y) + gv(—y) Jdx
‘ (A13)

where fx(x) is (14) and gv(y) is (15). The (A.13)
leads to (24).

1013
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Appendix B
Using the series expression of exp(x) and next
integral formula[7]

J r[—;-+%]
.[,;Sin“ada=——n'—*“— (B.1)
f'[l-}-;]

we can rewrite the (18) as follows

_exp(—R) 1 exp(-R) = RkF1 gk
folz) = v1—2° * 2 Va(1—2%) I;n k!
Mmi+X1  xrrl+X
{ 2 4 Z 2 4 @B
3, K Lk, '
Ial 2+ 2] i 5

The moment calculation of (B.2) is obtained from
(A.2) and then the general expression of (34) is
obtained. To evaluate the n-th moment of (19),
we make use of (B.1). Then, (19) lead to

wlw) = exp(—R) exp(—
gw av1l—-w? 2\/—

é\:“ Rk 1 \/—?

vef—

A1+570-w)"
[ 2

(2k) 1 rt%+§]

RVISW L +57vi—w
2 2
+ K (B.3)
(2k+1)!r{1+—2—]

The moment calculation of the first term in (B.3)
is obtained from (A.2) and that of the second
term is obtained from (A.10).

Therefore the moment expression of eq. (B.3)
is obtained as follows,

exp(—~R) r[% +%]

Mo = n
\/;F[l-f‘—z']
exp(~R) 2Zk+1 +1
t= 2\/_ I‘Zw R r[ 2]
1014

K, 1
I‘[1+—2—]rtk+31

[
3,k 1
(2k)!r{—2—+ > 1Mk+ > +1]

RIM= + ]F[k+—]

_+_
2k +1)! 111+7]r[k+—2—+2]
. n = even number
my, =0 : n == odd number (B.4)

The n-th moment of BPSK can be obtained from
1 1
mo = |1 x5 f2(2) +f2(~2)] dx (B.5)

where fz(z) is (B.2). The (B.5) leads to (35).
Similarly, the n-th moment of QPSK can be ob-
tained from

o= [ % & (o) 2~ 2) Fmwlw) +gwl - w) Jdx
‘ (B.6)

were fz(z) is eq. (B.2) and gw(w) is (B.3). The
(B.6) leads to (36).
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