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Optimal Grayscale Morphological Filters
Under the LMS Criterion

Kyung-Hoon Lee* Sung-Jea Ko* Regular Members

ABSTRACT

This paper presents a method for determining optimal grayscale function processing(FP) mor-
phological filters under the least square (LMS) error criterion. The optimal erosion and dilation
filters with a grayscale structuring element(GSE) are determined by minimizing the mean square
error (MSE) between the desired signal and the filter output. It is shown that convergence of the
erosion and dilation filters can be achieved by a proper choice of the step size parameter of the
LMS algorithm,

In an attempt to determine optimal closing and opening filters, a matrix representation of both
opening and closing with a basis mairix is proposed, With this representation, opening and closing are
accomplished by a local matrix operation rather than cascade operations. The LMS and back-propa-
gation algorithms are utilized for obtaining the optimal basis matrix for closing and opening. Some
results of optimal morphological filters applied to 2-D images are presented.
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1. INTRODUCTION

Mathematical morphology involves the study of
the different ways in which a structuring element
interacts with a given set, modifies its shape, and
extracts the resultant set [1]-[3]. The basic
operations are erosion and dilation. Based on these
operations, closing and opening are defined. The
morphological operations have been successfully
used in many applications including object recog-
nition, image enhancement, texture analysis, and
industrial inspection [ 2], [3].

In mathematical morphology, several techmques
have been used for finding optimal grayscale mor
phological filters. Some techmques use neural
networks and fuzzy systems in which synaptic
weights are represented by a structuring element
and trained by a variety of neural learning algo-
rithms [4]-17]. Recently, Dougherty |7] introduced
the derivation of the fundamental set for morpho-
logical filters, this set being a minimal family of
structuring elements from which 1t 1s a]v;/ays
possible to select the erosions and dilations com
prising an optimal filter. The advantage of this
scheme is that « prior: information concerning the
multivariate distribution of the filter input signal
is not required. However, for morphological filters
of size greater than three pixels, the fundamental
set becomes a big search space without clear
means to find an optimal morphological filter.

The LMS algorithm has been widely used in
linear and nonlinear adaptive filtering due to its
capability to handle an unknown joint distribution
function. Recently, the microstatistic {8] and
neural filters [9] have successfully exploited the
LMS algorithm. However, the LMS algorithm
has never been applied to grayscale morphology.
This paper presents a method for determining op-
timal grayscale FP morphological filters with any
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size of GSE under the LMS error criterion [10],
[11]. The optimal erosion and dilation filters with
a grayscale structuring element are determined
by minimizing the MSE between the desired signal
and filter output. Convergence properties of this
scheme are studied by utilizing a method in [12].
It is shown that convergence of the erosion and
dilation filters can be reached if the step size par-
ameter n of the LMS algorithm is restricted to 0
<l

The second major part of this paper is concerned
with the optimality of compound filters suchas
opening and closing. In an attempt to determine
the optimal compound filters, we propose a matrix
representation of these filters using a basis matrix
by extending the basis function theorem [13], [14].
With this proposed representation, the closing and
opening operations are accomplished by a local
matrix operation rather than cascade operations.
Furthermore, the analysis of the basis matrix
shows that the basis matrix is skew symmetric,
permitting to derive a simpler matrix represen-
tation for compound morphological operators [15].
The LMS and back-propagation algorithms are
utilized for obtaining the optimal basis matrix.
Each entry of the basis matrix is found through a
back propagation algorithm, It is shown that con-
vergence of these compound operations is reached
in a few iterations. Some results of optimal mor-
phological filters applied to 2-D images are
presented,
Section 11, some basic morphological definitions
are presented and the optimal dilation and erosion
filters are determined by using the LMS algorithm,
Convergence properties are also investigated. In
Section III, the optimal opening and closing
filters are obtained. In section IV, experimental
results are presented. Conclusions are given in

section V.
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[I. OPTIMAL EROSION AND DILATION FILTERS

Before stating the optimal filtering problem
over the class of the grayscale morphological
filters, we review the grayscale erosion and dilation
operations and introduce some common terminolgy.
Let the GSE with size N be denoted by k = {k(0),
k(1),-,k(N—1)} and a set of samples covered by
k at time n be denoted by f(n). The output g()
of a grayscale morphological operation is given by

g(n) =0[f(n)], 9y,

where 0 is a Min/Max operator representing
either a single operation (Min or Max) or a
combined operation of Min and Max (Min of
Maxima or Max of Minima). For instance, the
output of the grayscale dilation is given by

94{n) =f(n) ® k=maxl f(n) +k(0), f(n—1)
+k(1), -, fn=N-+1) +k(N-1)], (22)

and the output of the grayscale erosion is given by

g,(n) =f(n) © k=min[ f(n) —k{0), fn+1)
—k(1),, fn+N=1)—k(N-1)], (2b)

In mathematical morphology, erosion and di-
lation are the most fundamental and important
operations, This is so because all the compound
morphological operations can be implemented as a
union/an intersection of erosions and dilations.
Next we present a method based on the LMS
algorithm for determining the optimal GSE for
erosion and dilation.

1. LMS Algorithm for Optimizing Erosion and
Dilation

The MSE is given by

MSE=E{d(n)—0[f(n)12=E[&(n)), (3)

where E{-} is the expectation operator, d(n) stands
for the desired signal (target value) at time n,
and &(m) is the difference between the desired
signal and the output value. The optimal filtering
problem under the LMS error criterion usually
requires the knowledge of the input correlation
matrix. On the other hand, the LMS algorithm
[10], [11] which has been applied in adaptive signal
processing, does not not require the input corre-
lation matrix. With the LMS algorithm, optimal
morphological filter can be obtained by finding
the optimal GSE minimizing the MSE.

The LMS algorithm is based on a learning rule
as follows : The updated value of GSE k at the (p
~+ 1)tk iteration is given by

kp+1:’kp—ﬂAkp. (4)

Here the increment Ak, is obtained by estimating
the gradient of the MSE between the desired and
actual output signal. The parameter » in Eq. (4)
is related to the covergence of the steepest-de-
cent algorithm [10], [11]. At each iteration, we
have a gradient estimate given by

aELEdm)]
ok(0)

Ak,y= k(1) i (5)

OE[£*(n)]
ok(N—1)

where E[-] is the expected value and the (m—+1)
th element of this vector is

SELL*(m)] _ - 3% m) q_ o) v
com L akom d =2 ELEM o0
(6)
With this defimition, the derivative ocn) is
) 3k(m)
given by
on) _ _ 28(f(n)] o
dk(m) okim) °
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For dilation, this derivative can be obtained using
the following formula

ablfn)] {1. if g(n) = f(n—m) +k(m),
ok(m) 10, otherwise. (8)

For erosion, the derivative is given by

aolf(n)] { =1, if gln) = fn+m) —k(m),
| 0, otherwise. 9)

Next, we make an attempt to smooth the estimate
in Eq.(6) by using an averaged gradient of the
MSE. The mth element of the gradient vector can
be estimated as

o I ;C(() (d(j)=0l£(/)])

oc\n

k — ES .

Le i o
=l Ck(m)

where L is the total number of samples in the in-
put signal, and the denominator represents the
total number of times that the mthelement in the
input vector becomes the output.

2. Convergence Properties
In applying the LMS algorithm to adaptive linear
filtering, it is found that the convergence depends

on the ratio lm"f where A, and 2,,,,, respectively,
min

are the maximum and minimum eigenvalues of the
input correlation matrix R [12]. If this ratio is
large, i.e., the eigenvaluse of R are dispersed, the
algorithm converges slowly. In practice, the
eigenvalues of R are difficult to evaluate. However,
in order to show the convergence of the adaptation
algorithm for dilation and erosion, we utilize an
approach similar to the one in [11], [12] where
the knowledge of the matrix R is not needed.

Proposition 1 : Convergence for dilation and erosion
can be achieved if 0<{n{1.

Proof : For dilation, the error at iteration p+1
can be written as

&pir(n) =d(n) —max [Sn—d+k, ()], (11)

1098

where k,(7) is the (i -+ 1)tk structuring element
at iteration p + 1. Furthermore,

Ofp(n)

- (12)

kp+1 7kp(l 27]5,,(”)

Substituting Eq. (12) into Eq. (11) gives

i) =d(m) —max [ £o=i)+ ko)
26, 0m)

Wk() !}

—2n¢,(n)-

Suppose that the (7 + 1)tk element is the maximum
in the above max operation, Then

; ) ) F'Qp(n)
S ) =dn) = fln—7) Fip(7) —2ng,(n )T!E(]T]
Since from Eq. (7) and Eq. (8),
¢, (n) LA flr= g k() =0[f(n)],
ky(7) ) ), otherwise.
Thus,

G =dn) — | fn=j) +k(J) +20&,(0) ],

glm)=dn)—| fn—j) +ik,(7) 1.
Thus,

Epr () =1 =2n) ¢, (n).
At iteration p+2,
Eppalm) =(1=2m¢,, (n) = (1-2n)2¢,(n)

Thus, at iteration p-t+gq,

Epr i) =(1—2n)E (n).

Taking the expected values from both sides gives

Elg,y,m]=0—2nELE,(n) ]
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This error will converge to zero at g== only if

11-2n1<1.

In other words, for convergence,

0{n<1.

Similarly, the convergence for erosion can be
proved.

It is necessary to examine the effect of the par-
ameter 5 as n varies within the above condition.
In Fig.1, each convergence curves of dilation are
visualized with respect to the number of iterations

ITERATION

Fig 1. The variations of the MSE convergence curve
when the parameter y moves in 0{5<{1.

for n=20.1, 0.3,--,0.9. In the Fig.l, it is found
that the optimization process with = 0.5 can be
terminated(MSE =0) at the smallest number of
iterations,

. OPTIMAL OPENING AND CLOSING FILTERS

In this section, results for erosion and dilation
are extended to the optimization of opening and
closing. To find the optimal GSE for opening and
closing, we first introduce a matrix representation
of both opening and closing with a basis matrix
by extending the basis function theorem [2], [3],
[13]. With this representation, opening and closing
are accomplished by a single local matrix operation
rather than cascade operations that introduce
delays and require additional storage.

1. Basis Representation of Opening and Closing

The next proposition formalizes the basis rep-
resentation of grayscale opening and closing.

Proposition 2: The grayscale opening of f(») by
an structuring element k is given by

go{n) =max{minl fin—z+2z)+b(z 2)]}

and grayscale closing is given by

g m)=min{max{ fn+z—2")—blz 2]},

where b(z, z2°) is called the basis element of
grayscale opening (closing) and it is defined
as b(z, 2")=k(z) — k(2.

Proof : From the definition of grayscale opening,

9ln) =[(fO k) ®k](n)
=(g.®Kk)(n)
=maxig.(n—z)+k(z2)}

=max {min [ f(n—z+2)—k(z)]+k(2)}.

Since min{a, 8] +c=min[a+¢, 8+c], g, can be
represented as
1099
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g.(n) =max{iminl fin—z+2z")+b(z 2]

g.(») can be derived similarly.

Using this proposition, opening and closing
can be realized by local operations based on
sums and differences of f(n) and k. For example,
consider a GSE k =1{k(0), k(1), k(2)}. The outputs
of opening and closing, respectively, are given by

go{n) =maximinl f(n), fn+1)

+6(0, 1), fln+2)+56(0,2)],

min[ f{n—1) +b(1, 0}, f(n), fln+1)+5(1, 2)],
min[ f(n—2) +5(2, 0), f(n—1)+&(2, 1}, f(n) ]},

and closing

g.(n) =minimax| f(n), f(n—1)
=500, 1), f(n—2)—b(0, 2)],
max[ f(n+1)—5(1, 0), f(n), flrn—1)-b(1, 2)],
max[ f(n+2)=b(2,0), fln+1)-b(2 1), f(m)].
The grayscale opening and closing of f(») by k
of size N can be expressed in a compact form
using matrix notation : Let the N X N input matrix
be denoted by
F(n)=
S(n) fn+1) - fln+N—-1)
fin—1) fn) - f(n+N-2)
fn=N+1) fin=N+2) - fin)
(13)

Let the N X N basis matrix B, whose elements
consist of {b(7, j)}, be given by

Bz
5(0, 0) b(0, 1) b(0, N—1)
b(1, 0) b(1, 1) (1, N—1)
BN=1,0) b(N—1,1) -~ b(N—1, N—1)
(14)
1100

It 1s interesting to observe some proporties of the
basis matrix. First, each row represents a basis
function defined by [2], [3], [13]. Second, since
b(i, 7y =k(1) ~k(7), b(i,i)=0, and b(i, j)= —b{J 1),
Thus, the basis matrix can be written as :

B=
0 50, 1) (0. N=1)
~b(0, 1) 0 (1, N—1)
~b(0, N=1) —b(1, N=1) - 0
(15)

Note that the basis matrix is skew-symmetric,
that is, B/ = — B, where B! is the transpose of B.
This matrix also implies that the total number of
unknown weights can be reduced from N? down
to (N¢=N)/2.

The output of opening (closing) at time n is
obtained according to the following steps: Add
matrices F(n) in Eq. (13) and B in Eq. (15), and
at each row (column) of the resultant matrix,
find the minimum (maximum) of the row(column)
elements. The maximum (minimum) of the minima
(maxima) represents the output of opening(closing)
at n.

This implementation using local operators for
opening and closing can lead to two layer neural
network representations as shown in Fig.2. In
these representations, each basis element in Eq.
(15) is adopted as a synaptic weight to be added
to each node input, and the output of each node
1s determined by the minimum or maximum oper-
ation rather than the summation operation used
in general neural networks. The minimum and
maximum operétors are symbolized as ¢ and o
in Fig 2.

In Eq.(15), it is interesting to note that among
the only(N?—~N)/2 unknown entries in the basis
matrix, the N—1 entries are linearly independent
with the remaining ones represented as linear
combination of the others. The next proposition
formalizes this observation,

www.dbpia.co.kr
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f(n+2)

f(n+1) ®
12) \
£(n) 0 o Q > O
::;;::?fg::::: /////9//////7

f(n—l) __b(1’2) .
-b(0,7)
f(n-2)
()

£(n+2)

%\
£(n+1)y<2HB—> O .

O 0 > @

£40-1)"Tp5(5,1) O
}u/

£(n-2)
(b)

Fig 2. The two-layer neural network representation of
the morphological operations(size of GSE N =3)
: (a) opening, (b) closing.

Proposition 3: The basis matrix contains only
N—1 linearly independent entries,

Proof - Without loss of generality, it can be proved
for N=3. Since (7, 7) =k(i) —k(7), 5(0,2)=5(0, 1)
+b(1, 2) and (0, 2) = —b(2, 0). For N=3, there
are only 2 unknown basis elements, 4(0, 1) and &
(1, 2), since b(0, 2) is represented as linear com-
bination of the former two. It can be readily

proved by induction for any GSE with N ) 3.

Proposition 3 raises an interesting question, For
2 basis elements obtained from a 3-point GSE,
how do we obtain the original structuring element?
To obtain this, we may put an extra constraint in
the original values of the GSE. For example, k(0)
+ k(1) +k(2) =1. However, it is felt that this
problem is not significant because the knowledge
of the basis matrix is sufficient to perform opening
or closing,

2. LMS Algorithm for Optimizing Opening and
Closing

In the previous subsection, it is shown that
opening and closing can have a structure similar
to a two-layer neural network in which synaptic
weights are represented by basis elements. To
train the morphological neural network, we utilize
a learning rule based on the LMS algorithm.,
Each entry of the optimal basis matrix is found
through the back propagation algorithm,

The updated basis matrix B at iteration p+1 is
given by

Bp+y = B,—nAB,. (16)

The increment AB, is obtained by estimating the
gradient of the MSE. At each iteration, we have
a gradient estimate given by

AB,=

0 Ab(0, 1)
Ab(1, 0) 0

Ab(0, N—1)
Ab(L, N—1) |,

AB(N=1,0) AB(N—1,1) - 0
(17)

where

d&(n)
=2 El:i(n)‘aﬁ]

(18)

. OE(E(m)]
Ab(G, 7) = b6, 7)

0&(n)

From Eq.(3), the derivative ab(i. 7)

is given by

1101
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o&(m)  _ a0lf(n)]
obli, j) okl j) (1)

Using Eq.(13) and Eq.(15), the opening operation
is expressed as the row-wise basis expansion as
follows

0[f(n)]:max(ag, 11,"’,(1‘\'71), (20)
where

ap=min[ f(n), fn+1)+5b0, 1), f(n+N)
+&60, N-1)],

a;=min[ f(n—1)—5(0, 1), f(3),-. fn+N—-2)
+&(1, N-1) ],

a‘\ﬂfl—:mirl[f(n—z\'ﬁ'l)—b(O. 1\'—1), f(n—N+2)
=b6(1, N~ fm) .

5
Therefore, C—HLfSL)] can be obtained by applying
obli, 1)

the chain rule similar to the back propagation

algorithm
a0lf(n)] _ a0lf(n)]  lus (21)
ab(i, 7) Ca, b, 5)
where
a6l f(n)] _ { 1, if a,=6[f(n)],
Joty 0, otherwise. (22)

and for any m, n—N+1<m<n+N—1,

1. if o, = f(m) + b, j),
=< -1, ifa,=fm—bls 1), (23)
0, otherwise,

da,,

ab(i, 7)

Next, we make an attempt to smooth the
estimate in Eq.(18) by using an averaged gradient
of the MSE. The gradient vector can be estimated
as

()
R AL ¢
L ) 1 Tt W Olf(li]ﬁ)
2[tn ab(i, j)]ﬁ U
126G, 5)
RRANEYY
1102

where the denominator of Eq.(24) represents the
total number of times that the (7, j)th entry of
the basis matrix contributes to the output.

IV. EXPERIMENTAL RESULTS

In this section, the optimization of the grayscale
morphological filters is experimentally demons-
trated. Target images were generated by processing
an original image by each morphological filters
having an arbitrary GSE. The original image has
been used as an input image to each morphological
operators. Each filters have been trained by the
I.MS algorithm described in previous sections. In
this experiment, all the elements of the GSE was
initially set to zero. The MSE for the training
process and the values of the GSE obtained in
sucessive training steps were calculated.

1. Erosion and Dilation

The original image is shown in Fig. 3. A GSE
was selected as k==[15, 8, 5], and erosion and
dilation with this GSE were applied to the original
image to obtain target images. The target images
for erosion and dilation are shown in Fig.4(a) and
Fig.4(b). The training was performed while the
step size 5 was set to (.5. For erosion and dilation,
the final value for the the MSE is equal to zero
with convergence reached in 5 iterations in both
cases. The final value for the GSE is k=1[15, 8,
5] which is equal to the original GSE. The values
of the GSE obtained in successive training steps
for erosion and dilation are visualized in Fig. 6(a)
and Fig. 6(b). The MSE convergence curves are
shown in Fig. 7(a) and Fig. 7(b).

2. Opening and Closing

For GSE k=115, 8, 5], the basis matrix for
opening and closing is obtained by the method de-
scribed -in section 11!, and is given by

www.dbpia.co.kr
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(b)

Fig 4. The target image for erosion and dilation : (a)
erosion, (b)dilation. (k=1[15 8, 5] for both
cases)

| )

Fig 5. The target image for opening and closing : (a)
opening, (b)closing., (k=[15 8, 5] for both
cases)

Opening and closing with the above basis matrix
were applied to the original image to obtain target
images. The target images for opening and
closing are shown in Fig. 5(a) and Fig. 5(b). The
updating procedure was applied using the original
and target images for the optimization of opening
and closing. In this experiment, the step size n
was also set to 0.5. The final value for the MSE

GSE

GSE

Fig 6. The convergence curve of the GSE : (a) erosion,
(b) dilation,

is equal to zero with convergence reached in 9
iterations for opening and in 10 iterations for
closing. For both cases, the original basis matrices
were obtained after the final iteration,

Since the 3 x 3 basis matrix consists of only
two linealy independent elements 5(0, 1) and b(1, 2)
from Proposition 3, the convergence of these
elements was examined. The results for opening
and closing are shown in Fig. 8(a) and Fig. 8(b).
The MSE convergence curves are presented in
Fig. 9(a) and Fig. 9(b).

1103
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MSE
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MSE

Fig 7. The MSE convergence curve : (a) erosion, (b)

dilation,
8
b(0,1}
5(12)
6| e 2 — iy S
] e— —
S
3 S -
[} Loaezz="1" -"‘-l A 1 1 1 1 i
0 1 2 3 4 5 L] 7 8 9 10
[TERATION
(2)
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8
b{0.)
(1.3
6f T o —- SR -
w |l - I
o
2+ e ——— e —
0 S el A 1 | N I I I}
o 1 2 3 4 5 L] 7 8 ® 10
ITERATION
(b)

Fig 8. The convergence curve of linearly independent
elements in the basis matrix : (a) opening, (b)
closing,

10

MSE

12

Fig 9. The MSE convergence curve : (a) opening, (b)
closing.
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V. CONCLUSIONS

We presented a method for determining optimal
grayscale function processing morphological filters
under the LMS error criterion. We showed that
convergence of the erosion and dilation filters can
be reached if the step size parameter n of the
LMS algorithm is restricted to 0<{»<1.

For the opening and closing filters, we proposed
the matrix opening and closing representations
using the basis matrix and characterized properties
of the basis matrix. The LMS and back-propagation
algorithms were utilized for obtaining the optimal
basis matrix for opening and closing. Experimen-
tal results indicated that optimal morphological
filters under the LMS error criterion were obtained
in a few iterations,
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