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Pipelining of Orthogonal Double-Rotation Digital Lattice
Filters for High-Speed and Low-Power Implementation
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ABSTRACT

The ODR{orthogonal double-rotation) digital lattice filters have desirable properties for VLSI
implementation such as local connection, regularity and pipelinability. These filters are also known
to exhibit good numerical behavior for finite precision implementation. Although these filters can
be pipelined by the cut-set localization procedure, it should be noted that the maximum sample rate
obtained by this technique is limited by the feedback computations.

In this paper, a pipelining method for the ODR digital lattice filter is proposed, by which the
sample rate can be increased at any desired level. It is also shown that the low-power CMOS digi-
tal implementation of ODR digital lattice filters can be done successfully using our pipelining
method. The pipelining method is based on the properties of the Schur algoithm, constrained filter
design methods, and the polyphase decomposition technique.,
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I. Introduction

Any given digital filter transfer function can be
realized in an infinite number of ways theoreti-
cally. From the implementation aspect, some stru
ctures may have lower complexity, while others
may be pipelinable, and yet some others may con-
sist of regular modules that can be designed in
less time, etc. Much research has been carried out
to search for different realization structures with
various desirable properties and enhanced per
formance. Some major work includes wave digital
filters (1], basic and normalized lattice Silters [2-3],
scaled normalized lattice filters [4-5), and ODR digital
lattice filters [6].

The ODR digital lattice filters were developed
for the realization of any stable, passive digital
rational transfer function in a cascaded intercon-
nection of orthogonal sectioms. Therefore, these
filters possess desirable properties for VLSI im
plementation such as local connection, regularity
and pipelinability. Each section of these fileters is
realized involving only Givens rotations and stor-
age elements, which enables the translation of
the sensitivity arguments for analog lossless lad-
der realizations to the ODR digital lattice filters,

Achieving high speed in recursive filters is dif-
ficult because of the feedback loops. Although
these filters can be pipelined by the cut-set
localization procedure in [7], it should be noted
that the maximum sample rate of these pipelined
filters is limited by the feedback loop computat-
ions. A linear array is pipelinable when either all
the left-directed or all the right-directed edges
between modules carry at least one delay on each
edge. If this condition is satisfied, the cut-set
localization procedure can be applied to transfer
some delays or a fraction of a delay to the op-
posite directed edges. For example, in the ODR
digital lattice filter in Fig.1, the cut-set localiz-
ation procedure can be applied to transfer one
half of each delay on the right directed edges to
the left directed edges. Then the half delays can
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be implemented by time rescaling. For example,
using one clock cycle to represent a half delay,
we can input data once every two clock cycles
and generate the output data once every two
clock cycles. With this transformation, the clock
speed can be increased, but the sample rate can-
not be increased, since multiple clock cycles are
needed to process one sample. The maximum
sample rate of this structure is limited by the
feedback loop computation which involves three
multiplications and three additions,

To increase the sample rate of IIR direct form
filters at any desired level, the scattered look-
ahead technique was proposed in [8]. Pipelining
methods for basic lattice, normalized lattice, and
scaled normalized lattice filters were proposed in
[9-10]. In this paper, a pipelining method for the
ODR digital lattice filters is proposed using the
properties of the Schur algorithm [11], con-
strained filter design methods 19, 12-13], and the
polyphase decomposition technique [14]. The pi-
pelined filters can also be used for low-power ap-
plications [ 15].

II. Synthesis of ODR digital lattice filters

Consider an N-th order stable, passive IIR tran-
sfer function given by H(z) =N\(z)/D~(2), where

Nylz)=17%

—i 0

ni2', and Dy(z2) =X} diz'. (1)
Then, the filter synthesis steps can be briefly

summarized as follows (6] :

Step 1)For any N-th order stable, passive 1IR tr-

ansfer function, find Ex(z) which satisfies the fol-

lowing relation :

Ex(2)*Ex(2) = Da(2)* Da(2) =N (2)*Na(2).  (2)

The superscript(*) operation is defined as

A)*=4"(1/z"), (3)

where () represents complex conjugate transpo-
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Fig. 1 Orthogonal double-rotation digital lattice filter structure

sition,

(1)

Step 2)Form PN(Z)z[ NN(z)] .

EA\‘(Z)

The k-parameters for the first section are compu-

ted as follows :

ko= Px(0) [ Dy(c0), (5)
where ko=[ oy ] (6)
kOZ

Step 3) The new numerator and denominator poly-
nomials are computed as follows :

Dy-1(2) =z Y (1~ko ko) V2 (Dn(2) — ko' Px(2)),
Pyoy(2) = (I —koky) V2 (Py(2) — ko Dn(2)). (7

Steps 2 and 3 are repeated until N+ 1 sets of &-
parameters are obtained. Using the k-parameters
obtained in step 2, the filter can be realized as in
Fig. 1.

Notice that steps 2 and 3 are just a particular
version of the Schur algorithm, which can be re-
written as follows :

Step 2-1)
[ Dn(2)* }: 1 ( 1 —kn ] . [Nx(z) }
Ny-1(2) 1-k% L ka1 Ex(z) '
(8)

where ko[ == !V‘\'(OO) /DN( OO)

Step 2-2)

l: ZD‘\'—{(Z) } _ 1 [ 1 —ke] . " D,rv(z)+}
Ex-y(2) Vi—k%, L —ke 1 'L Enta)
(9)

where kg = Ex(©) /Dx(o)™,

The subscript of each polynomial denotes the
degree of the polynomial. Therefore, through the
steps 2-1 and 2-2, the degrees of Dy(z), Nx(2),
and Ex(z) are reduced by 1, respectively,

II. Pipelining of ODR digital lattice filters

In the filter structure of Fig. 1, if k-parameters
of section #{(i.e., kiy and k) are zero, then the
feedback loops through the section are removed.
If k-parameters of every odd numbered section
are zero, then every feedback loop through odd
numbered sections is removed, which means that
every feedback loop has one more delay available.
By redistributing the additional delays at the pro-
per locations, we can achieve 2-level pipelining.
This approach can be extended for general M-level
pipelining. The pipelining approach in this section
is based on this observation.

Let’s denote the N-th order denominator in (1)
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as follows :
Dy(z)=[dy dy-1 dv- ... dy do]. (10)

Nx(2) and Ex(z) can also be represented by the
same way.,
From step 2-1.

LNAV(Z) _‘km D.\'(Z) ]
Vi-ky

Nyolz) = (1

With kg =#ny/dy, Nx-1(2) can be computed as

[nxd‘\'- nvdy ny—1dy-nndy-1 .. mody - n;\'d()]
Vdi—ni
It may be noted from the vector notation of
Nx—1{z) that the coefficients of Ny—(z) can be

computed by times the N+1 determin-

Iy B
2 2
Vdi—ny

ants of 2x2 submatrices formed by the first
column and each succeeding column in the follow-

ing matrix :
dy dy_y dy_o oo do d\ dy
Ny M- Ry—o o= ne 1y No

The determinant of the first submatrix is alw-
ays zero since the submatrix is formed by repeat-
ing the first column twice, which i1s obviously a
dependent matrix. Therefore, the degree of Ny -
(2) is reduced by 1 compared with that of Ny(z).
For each 2 X 2 submatrix, if a column 1s composed
of all zero elements, the determinant of the sub-
matrix is zero. Therefore, if Dx(2) and Ny(2) have
j-consecutive zero coefficients between each two
nonzero coefficients of nearest degree, then Ny
(2) is forced to have the same property. The co-
efficients of Dy(2)" in (8) can be computed from
the same submatrices as :

i-th coefficient of

Dy(Z)* = - [ product of the elements in

1
VdT—n}
the 1st row of 1-th submatrix - product of the
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elements tn the 2nd row of i-th submatrix ] .

(12)

Therefore, if Dx(2) and Ny(2) have j-consecutive
zero coefficients between each two nonzero coef-
ficients of nearest degree, then Dx(2)% is forced
to have the same property. By (12), the coef-
ficient of the highest degree term of Dy{2)" (i.e.,
t==1), and the constant term can be computed as

follows :

di=\di-nt (13)

dy- dsmon (14)
vdi — ni

From (13) and (14), it is obvious that the degree
of Dx{z)" is not reduced by the step 2-1.

In step 2-2, with kp=ex/d Y, Ex—1(2) and zDv—)
(2) are computed by the same way as Ny-1(z)
and Dy(z)" are computed., Therefore, the degree
of Ex-1(2) 18 reduced by 1 compared with that of
Ex(z). On the other hand, the constant term of
zDx-1(2) can be computed as dody — nony—enen/
Vdi—ni—eé} .

The constant term of zDy-1(z) is always zero
since, by (2). Ex(z) satisfies the following con-
dition :

evex =dydy—mony . (15)

Therefore, the degree of Dy-1(2) is reduced by 1
compared with that of Dy(z) through the steps
2-1 and 2-2. Above observations are summarized
by the following theorem which is crucial for the
pipelining of ODR digital lattice filters :

Theorem 1:1et’s assume the conditions of step 1
of section 2 are satisfied by N-th order polynomi-
als Dx(2), Na(2) and Ex(z2). If Da(2), Ny(2) and
Ix(2) have j-consecutive zero coefficients between
each two nonzero coefficients of nearest degree,
then Dy-1(z), Ny-i(2) and Ex-(2) also have j-
consecutive zero coefficients between each two
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nonzero coefficients of nearest degree when those
polynomials are obtained by the steps 2 through 3
of section 2,

If Dn(2), Na(2) and Ex(z) satisfy the j-consecu-
tive zevo condition of Theorem 1, it can be shown
using step 2 that the k-parameters of consecutive
j-sections become zero, The polynomials satisfy-
ing the j-consecutive zero condition can be obt-
ained by the following procedure :

1) Given filter specifications and pipelining level
M, design the filter using any constrained filter
design method [8-9, 12-13], which constrains the
denominator to be a polynomial in z¥ rather than
in z. Therefore, the transfer function can be re-
presented by H(z) = N(z)/D(2¥),

2) Decompose the obtained transfer function H
(2) using polyphase decomposition techinque :

M- zi ]V(“(Z)

HO =5 o "o
| Hoyggey o N2 E%) ) | 2
D@?) -
'
o Hopz2y o N2, BV )

D(z?)

Fig. 2 Overall scheme of 2-level pipelined orthogonal do-
uble-rotation digital lattice filter

; P N .
where N9 (z2)=Y ‘nitm. z/M, (17)
=

=

and P is an integer which satisfies the following
condition :

N-M<i+PM<N. (18)

3) For D{(z") and each N'9(z), compute E"'(z)
which satisfies {2). Note that £%(z) is also a poly-
nomial in z¥.

4) Since {D(2"), N¥(z), E"(2)} satisfies the con-
ditions of Theorem 1, it can be synthesized as an
M-level pipelined ODR digital lattice filter. The
final output is obtained by adding the outputs
from each set HY(z) ={D(2"), N¥(2), E¥(2)},
for i=0 to M—1, by (16). For example, Fig. 2
shows the overall scheme for M =2,

Example 1:

The design example in [6] is used for the syn-
thesis of 2-level pipelined ODR digital lattice fil-
ter. A pipelinable transfer function which satisfies
the conditions of Theorem 1 is synthesized using
the constrained filter design method in [9] with
M =2. The obtained transfer function is as follows :

D(z%)=[10 —1.7399 0 1.2893 0 ~0.3468],
N(z)=1[0.0322 0.0623 0.0128 —0.0174 0.0372 0.0564 0,0189]

0.9905 0.9642 0.8302
OUT - - -
0.0323 -0.0323 0.2653 -0.2653 0.5574 0.5574 0.8832
3 \ \ ) ¥ [
IN 0.260 0.4288 0.3338
0.9005 T |zt oses Tl 'zt os32 RS
0.9656 0.9656 0.9034 0.9034 0.9426 00426 | 0.4497
1 A 4 Y /
0.260 0.4288 0.3339
Fig- 3 Orthogonal double-rotation digital lattice filter implementation of H'”(z) in Ex.1 (M =2)
2413
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The transfer function H(z) is decoinposed by
the polyphase decomposition techmque in (16).
Since M =2, we have two sets of decomposed tran-
sfer functions :

[N“"(z) }? { 0.0322 0 0.0128 0 0.0372 0 0.0189 W
EYz) ] L 0.9650 0 —1.7402 0 13106 0 ~0.3508 |

[A\"l’(z) }7[ 0 0 006230 —0.0174 0 0.0564 ]
EV(z) ] 1096450 —1.7396 0 1.3103 0 0.3594 |

The k-parameters for H'"'(z) and H'''(z) are com-
puted by iterative applications of the steps 2-1
and 2-2 as follows :

-k-parameters for H"' (2) :
]:0.0323 0 0.2653 0 0.5574 0 0.8932}

0.9656 0 —0.9034 0 0.9426 0 -1

-k-parameters for HY(2)

o

{ 0 0 0.2356 0 0.3617 ().9180}
0.9645 0 —0.9072 0 0.8745 0 -1

The first row of each k-parameter matrix corre-
sponds to k;;’s and the second row corresponds to
ki2's. Column 7 of each k-parameter matrix corre-
sponds to the k-parameters of i-th section. Notice
that the k-parameters of alternate sections are
zero. Fig.3 shows the implementation of the ODR
digital lattice filter corresponding to H"(z). Ina
similar manner, H'"”(z) can be implemented and
those two implementations are interconnected hy
the scheme as shown in Fig.2, which completes
the filter design process. 4

The process of retiming involves moving around
the delays in a circuit such that the total number
of delays in any loop remains unaltered, and the
input-output behavior of the system is preserved.
Removal of a fixed number of delays from each of
the incoming edges of any node, and addition of
the same fixed number of delays to each of the
outgoing edges of the same node is a basic
retiming operation. An example is shown in Fig.4.
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By repeatedly applying the basic retiming oper-
ation, delays can be moved to the desired
locations such that the critical path of the circuit
1s minimized. In Fig.2, there are two delays in
each loop and these delays can be distributed
such that the critical path is halved as compared
with that of the nonpipelined filter. This results
In an increase of clock speed by a factor of two.

3D 2D

b
Ifl
;

D: Delay

Fig. 4 The delays on the incoming edges are reduced by
one, while the delays on the outgoing edges are
increased hy one,

To apply the polyphase decomposition technique,
the denominator of a transfer function should be
a polynomial in z¥. The transfer functions satisfy-
ing this condition can be obtained by applying the
scattered look-ahead method to a transfer func-
tion whose denominator is a polynomial in 2. To
avoid the drawback of canceling zeros in the scat-
tered look-ahead method, the pipelinable transfer
function can be designed directly from the filter
spectrum while the denominator is constrained to
be a polynomial in zY rather than in z. The con-
strained filter design method used in Example 1 is
called the modified Deczkv’s method. In [9-10], it is
shown that the transfer function designed by the
modified Deczky’s method requires less hardware
than the scattered look-ahead method.

The modified Deczky's method first expresses
the magmtude and group delay responses of a fil-
ter as functions of the radii and angles of the
poles and zeros. Then the formulae for the partial
derivativves of the magnitude and group delay are
obtained with respect to the radius and the angle
of a pole and a zero. These derivatives are used
in the Fletcher-Powell algorithm to minimize the
approximation error. To obtain a denominator in
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z™, the partial derivatives for a denominator are
recomputed in powers of z¥ and the equations are
used in the Fletcher-Powell algorithm, Then, the
denominator of the resulting transfer function is
in terms of z¥.

V. Low-power implementation of pipelined ODR
digital lattice filters

The issue of low-power design is of great con-
cern, particularly in high performance portable
applications, Furthermore, as the density and size
of the chips and systems continue to increase,
the difficulty in providing adequate cooling might
either add significant cost to the system or pro-
vide a limit on the amount of functionality that
can be provided. In addition, many computation
tasks currently require real-time processing. Once
the real-time requirements are met, there is no
advantage in increasing the computational throu-
ghput. This fact, along with pipelining, can be
used to provide significant power savings in CMOS
digital designs.

The power dissipation in a well-designed digital
CMOS circuit can be approximated as

P=C/VZ%a [, (19)

where C; is the total switching capacitance, Vg4 is
the supply voltage and f is the clock frequency,
Due to the quadratic relationship of Vs to the
power consumption, reducing the supply voltage
is clearly the key to the low-power operation even
after taking into account the modifications to the
system architecture, If Vgy is reduced, we should
pay a speed penalty (i.e., increase in the propa-
gation delay T,) as can be seen from the follow-
Ing equation :

1V,
T, 1 Vad

= R a—VIE (20)

where (; is the capacitance along the critical path
in the circuit, and V7, is the device threshold volt-
age and k is a process dependent parameter. No-

tice that 7, increases dramatically as V' 4; approac-
hes 17;, Also, the threahold voltage should be cho-
sen properly by the requirement to retain ad-
equate noise margins and the increase in the sub-
threshold currents.

For an M level pipelined system, the propagation
delay T, is

C; Vaa

:_.';i R(Vaa—Vy)? (1)

Ty
Clearly, the pipelined system can be clocked A
times faster than is necessary since the capaci-
tance along the critical path has been reduced by
M times compared with the nonpipelined system.
Therefore, the supply votage can be reduced un-
til 75 equals 7,. Since the pipelined system can
be operated at a reduced supply voltage and at
the same speed of the nonpipelined system, the
pipelined system can achieve dramatic reductions
in power consumption, In the following example,
it is shown that the low-power CMOS digital im-
plementation of ODR digital lattice filter can be
done successfully using this pipelining method.

Example 2:

Consider the 2-level pipelined ODR lattice filter
in Example 1. In this example, the additional delays
are used only for low-power implementation. There-
fore, the sample rate of the pipelined system is
remained the same as that of the original system
(M=1). Assume that the capacitance due to
multipliers is dominant and that the capacitance
due to the adders can be neglected. Also, assume
the supply voltage V', of the original system to be
5V and the CMOS threshold voltage to be 0.5V,
Then, from (20) and (21), the supply voltage for
the pipelined system, V'p, can be reduced to 2.
94V. Therefore,

. mp
power saving = (——

Ve ..
) (== )2 =0.638,
Vo

where m,=48 and m, =26 are the number of
multipliers for the pipelined system and the orig-
inal system, respectively. Therefore, the power con-
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sumption of the 2-level pipelined system is only
63.8%5 of the original system, 4

A direct implementation of the ODR digital lat-
tice filters seems to indicate a formidable increase
in hardware complexity when compared with con-
ventional realizations. An efficient realization sche-
me of the ODR digital lattice filters was proposed
in [6] using the CORDIC algorithm. A pipelined ODR
digital lattice filter 1s composed of only Givens ro-
tations and pure delays. Therefore, the CORDIC
algorithm can also be used for implementing a
pipelined ODR digital lattice filters,

V. Conclusions

It was shown that the ODR digital lattice fil-
ters can be pipelined at any desired level by the
proposed pipelining method. Since the pipelined
filters are composed of cascade connections of or-
thogonal sections, they exhibit good finite word-
length properties. Due to these finite word-length
properties, the pipelined ODR filters can be imple-
mented using a smaller word-length than the con-
ventional cascade or parallel form filters. The
pipelined filters can be used for high sample rate
applications or for low-power CMOS implemen-
tation applications.

The sample rate increase or the low-power im-
plementations are obtained with the cost of incre-
ased hardware, Threrfore, future work might be
to investigate a hardware minimization method
for this proposed pipelining method.
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