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Techniques of Element Scheme of Solving Waveguides and Wave Scattering
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ABSTRACT

This paper presents improving techniques of waveguides and wave scattering by utilizing element scheme in method of
moments. The introduced element scheme expands the expansion function over an element segment instead of a node as done in
ordinary moment methods. This scheme lends to accept the treatment of junction structures by offering simplified formulation and
random node numbering feature as well.

To show the effectiveness of element scheme, waveguide modes of a septum guide with known solutions is determined and
also this scheme is applied to a quadridge cylinder to calculate its radar cross section.

I. INTRODUCTION ing problems of various structures in shape™?.

Specializing moment methods to an integro-differ-

Method of moments has been used to obtain ential equation subject to boundary conditions
the numerical solutions in waveguide and scatter- reduces a matrix equation, from which the
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unknown physical quantities may be determined.
However, in applying this method to arbitrarily
shaped multiply connected structures this node
scheme suffers in random node numbering fea-
ture especially for structures with junctions
because a testing point is straddled with two ele-
ments. To remedy this problem and also to have
a more systematic coding benefit. introduced ele-
ment scheme expands the current over an ele-
ment segment as often done in finite element
methods®. The resulting each matrix elements is
based on element by element rather than node by
node as in ordinary node scheme, which simplifies
the formulation due to its cut downed integration
range together with benefit of random node
assignment.

To show the usefulness of introduced element
scheme in treating multiply connected cross sec-
tions, waveguide modes of a conducting septum
waveguide for known solutions are calculated and
compared to each other. And this scheme is
applied to two dimensional conducting quadridge
cylinder of unknown solutions to obtain its radar
cross section.

[. FORMULATION OF THE PROBLEM

For a given electric wall current J on the
boundary, the electric field E can be represented
by the scalar and vector potentials, $ and A as®

L) = E" = jad+ V¢ 0
where

_B @
A= Y %c JHs (kR) dl @

1§ @
0= S fc(v DHSkRYdlI 3

and HY¥ is Hankel function, and E™ represents
the incident electric field for scattering problem

and sets to zero for waveguide mode computation
in element scheme. k represents the wavenumber
and R the distance between field point and source
point, respectively. TE wave is assumed both for
scattering and waveguide problem and axial direc-
tion in cylinder along the z-axis, hence the wall
currents flow along the circumferential direction
in scattering and also parallels to this direction for
cutoff currents in waveguide problem. Especially,
for modes in waveguide those k appeared in eq.
(2) and (3) become the cutoff wavenumbers®.
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Figure 1. Current expansion over an element

To specialize the moment methods to eq. (1)
based on element scheme, wall current J is
superposed by the jth element current J* over an
element segment in terms of chosen linear basis
function set {#,, #5}, as shown in Fig. 1.

N
J=2,J9 @
J=i
where

JO =170, + 176,] ®)

1 denotes the unit circumferential vector tan-
gent to a boundary C in the jth element, I and
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% are coefficients at node point j and j1 belong
to the same jth element. Substituting eq. (4) into
(1) and taking test with each #, and #, on the
ith element of the contour gives

sl ZuZe 1) Y
w uj){ Zy Zn ][ 1}2, BRZ ®

where

Zin=§ duL@)dl o

Vl :§ ({l,‘ . _i:mc)q)ldl (8)

Va=§ G B0 9
¢

Ineq. (7). mand n are equal to 1 or 2 depend-
ing on the index of Z-matrix element. It is noted
that two respective testing on each element have
been required due to two unknown coeffcients in
eq. (5). Also note that, in eq. (7), (8), and (9),
integration interval has been restricted to an ele-
ment segment reduced in half compared to those
of node scheme for shown linear basis function in
Fig. 1. Evaluation of these integrals may be per-
formed following standard procedure encountered
in ordinary moment methods, but detailed calcu-
lations are not shown in here for brief presenta~
tion. This element based integrals enables us to
treat the multiply connected cross sections quite
systematically when combined with matrix assem-
by. since one pays attention only to element inte-
grals not to other integrals straddled with differ-
ent element numbers as appeared in the node
scheme.

To construct a complete system matrix, a cur-
rent continuity condition at each node sharing an
interelement, known as interelement boundary
condition, is applied. Applying this interelement
boundary condition is called matrix assembly in
finite element methods, which is written as®

10, =15 (10)

s+

Imposing the constraint condition eq. (10) to (6)
simply adds rows i and j and columns i and j in
the Z-matrix, and rows i and j in the V-matrix.
The assembled matrix is shown in eq. (11)

[ZU,] =1V} an

where index i and j run from 1 to total number

of node, and matrix element Z; and V, are given
ineq. (12) and (13), respectively.

Zy=Z,+ 7

Zim=Z m+ 2y (12)

Zij =2+ in

Z,+1,j+1 = Z:+Lr‘+l +Zn

and
Vi=V,+V (13)
Vier=Via + V.

In eq. (12), the four Z-matrix elements are
defined by eq. (7). The system matrix in eq. (11)
obtained by element scheme is just equal to that
matrix obtained by ordinary moment methods.

I . ILLUSTRATION

To treat junctions, for instance waveguide of a
septum with zero thickness shown in Fig. 2,
Kirchhoff’s current law(KCL) should be satisfied
at each junction point. It indicates that three
expansion functions at a junction, in Fig. 2. can
not be treated separately under the KCL condi-
tion. Hence expansion function from DEG and
DEB is overlapped to satisfy the KCL at junction
point®. This overlapping makes the current at
point E equal to the sum of two currents at point
A and F. The headed arrow indicates the positive
direction of current. The waveguide shown in
Fig. 2 supports dominant mode TE, ; of exact
cutoff wavenumber 1.166. whereas the numerical
solution was 1.1843 for matrix size of 40. The
numerically computed wall curent of this domi-
nant mode also well agreed with the known exact
solution.

www.dbpia.co.kr



/=N R ose] AaHAE A 247y

Current

1 F

0.5 E

C G
/ a Contour
-0.5 ¢ E
A

Figure 2. Wall current of septum waveguide

Fig. 3 shows the radar cross section for a con-
ducting quadridge cylinder, for which a plane
wave incidence has been assumed and the scat-
tered field has been found in terms of boundary
current calculated by element scheme, by using
(1 4)(6)

(14)

In Fig. 3, ka and kL are equal to unity and
0.5 respectively, and the quadridge has the equal
length L of arms. The incident plane wave is
impinging on ¢ = 180", Calculated radar cross
section shows symmetry pattern along circumfer-
ential direction due to geometrical symmetry in #
axis, as expected.

V. CONCLUSION

To facilitate the analysis of multiply connected
cross sections, element scheme in moment moth-
ods has been introduced. This scheme showed its
usefulness especially for the structures with junc-
tions by allowing random node numbering feature
and simplified integral formulations. Its validity
was tested by calculating waveguide modes of a
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Figure 3. RCS of conducting quadridge cylinder

septum waveguide and radar cross section of a
quadridge cylinder, based on employed element
scheme.
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