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An Efficient VLSI Architecture Implementing the Lempel-Ziv Compression Algorithm

Seung Hyun Nam*, Tae Young Lee*, Moon Key Lee*, Yong Surk Lee* Regular Members

ABSTRACT

This paper proposes a novel VLS! architecture capable of processing the Lempel-Ziv-based data compression algorithm very
fast. The architecture is composed of five main blocks, i.e., PE-based Match Block, Consecutive Hit Checker, Pointer Generator,
Length Generator, and Code Packer. The first part, Match Block, generates match hit signals which inform the Consecutive Hit
Checker(CHC) whether there are matches between the symbols of dictionary buffer and one symbol to be compressed. The dic-
tionary buffer is included in the Match Block. The second part, Consecutive Hit Checker, checks whether there are any consecu-
tive hits to detect the longest match substring. The Pointer Generator is a priority encoder which generates the pointer(address) of
the longest match substring and the Length Generator is a counter which generates its length. Finally the Code Packer makes a bit
stream using the combination of the pointer and the length of the match substring or a uncoded symbol. To reduce hardware costs
and to improve compression ratio, the dictionary buffer of 1024 bytes and the maximum allowable match length 16 bytes are used
in this architecture.

The proposed architecture has the following features. (1) The modularity of PE-based structure makes it possible to adapt to
various buffer sizes without any loss of speed and control overhead. (2) Designed in systolic architecture, the architecture has a
simple control logic. (3) It processes exactly one character per clock cycle, so it does not need any accumulated shift operations for
preparing the dictionary buffer, which are common problems found in most other architectures. (4) Implemented in 0.6 pm
CMOS technology, it can operate up to 100 MHz according to the netlist simulation of the critical path, the pointer generator. (5) It
can be used in real-time data compression for video coding or text compression over communication channels to reduce commu-

nication costs and time with a throughput rate of 100 Mega samples(characters) per second.
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[. INTRODUCTION

Data compression technology is a reduction
of the redundancy in data so that data stor-
age requirements and data transfer costs can
be reduced. It is a process of encoding the
body of data into a shorter form from which
the original or some approximation of the
original can be restored in a decoder at a
later time. The lossy compression can recover
the approximation of the original data. In
this paper. we focus on lossless data compres-
sion, from which the compressed data must
be recovered identically to the original data.
With the demand for efficient data compres-
sion methods. a number of lossless data com-
pression algorithms have been proposed such
as Huffman coding™. run-length coding™
®, LZ algorithm™®, LZW
algorithm'®, etc. Most of these algorithms

arithmetic coding
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have been applied to software implementa-
tions. Therefore, they do not satisfy the per-
formance requirements of the future systems.
Multimedia systems need real time data com-
pression over the communication channels to
reduce communication cost and time. For
example, the international standard V42.bis
is adopted for data compressing modems using
modified LZ-based data compression algorithm
implemented in 8-bit microprocessor with a
40-Kbyte RAM and 64-Kbyte ROM™. In the
future, one single chip must do this task
much more faster than 14,400 bps which is
the current common transfer rate. In recent
years, several special purpose hardware archi-
tectures have been proposed®®''". A few
designs using CAM(Content Addressable
Memory), microcode approach, and micro-
processor-based system have been reported. A

set of parallel algorithms for compression
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using textual substitution are proposed, and a
hardware system consisting of several chips
implementing their algorithm has been built.
However, some idle cycles must be allocated
in processing elements during operations,
causing the control overhead and the limit of
the number of processing elements. For
example, ‘shift and update’ process is needed

an

every 33 cycles in Wei's study””’. Yang and
Lee® exploited the CAM approach. However,
the compression ratio is very low due to the
limit of CAM size and the architecture pro-
posed needs one extra cycle to load new sym-
bols from buffer into the CAM. In Burleson's
paper" and Henriques's paper®. many delay
elements, long encoding latency, and unneces-
sary 'shift and update’ are incurred. Our
approach is a VLSI architecture which imple-
ments the modified LZ algorithm. The hard-
ware algorithm is systolic and can be effi-
ciently implemented as a single chip system.
They can process up to 100 Mega samples/sec
with a clock frequency of 100 MHz simulated
through the post-layout circuit simulation of
the critical part of the design. The chip can
process data compression and decompression in
real-time systems. An efficient hardware
algorithm implementing the LZ algorithm is
described. The rest of this paper is organized
as follows. The next section describes the LZ
algorithm and a modification for hardware
performance improvements in detail. Section
l and IV describe the proposed systolic algo-
rithm and its architecture. In section V.
decompression algorithm and architecture are
described. Conclusions are drawn in Section

V.
I. Lempel-Ziv Coding Algorithm

LZ algorithm is a compression method which

encodes source symbols into fixed length code-
words which represent match pointer C,.
match length C,. and last symbol C,*. The
match pointer C, indicates where the longest
match starts in the dictionary buffer. C; is
the maximum match length, and C, is the
first symbol in the uncompressed source sym-
bols. The LZ algorithm has two main steps.
First., we find the pointer and the length of
the longest substring in the dictionary buffer
that matches the string to be coded.
Hereafter, that substring is defined as cham-
pion substring. Second., we shift out the old
symbols in the dictionary buffer by the
amount of the maximum matching length
plus one(last symbol length) and shift the
symbols coded in the previous step, into the
dictionary buffer from the uncoded symbol
buffer. This second step is the accumulated
shift operations which cause hardware and
time overhead in other architectures"®*™!
and are deleted in this proposed architecture.

The above steps can be realized just by
comparison and shift operations but they
require one overhead cycle for every encoded
codeword. Suppose that the dictionary buffer
stores N recently compressed symbols and the
uncoded symbol buffer stores M uncompressed
symbols. The compression speed and ratio are
heavily influenced by size N. If N is infinite-
ly large, the compressed data can be reduced
near information entropy with the infinite
size of M. But, as N increases, processing
time and chip area also increase by the
requirements of the comparison operations
and the storage elements for buffering the
dictionary symbols. The compression ratio is
also affected by the maximum allowable
matching length M. If M is large, the com-
pression efficiency can be increased when the

length of the champion substring is suffi-
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ciently large. But if the length is less than
M. the achieved compression ratio will not be
improved. Moreover, the increased maximum
matching length requires more processing
time and hardware. In practical applications,
sizes from 4 to 32 are suitable for M, and
from 128 to 4000 bytes for N. With these
buffer sizes, compression ratio of 2 to 3 can
be achieved™. Fig 1 illustrates the LZ com-
pression process.

The compression steps in Fig 1 is summa-
rized as followings.

(1) Initialization : initialize the dictionary

buffer with ‘0" and fill the uncoded symbol
buffer with M uncoded symbols.

(2) Parsing ! find the longest substring in
the dictionary buffer that matches consecu-
tively with the substring starting from the
teftmost of the uncoded symbol buffer.

(3) Encoding ' encode the match pointer(C,).
the match length(C)). and the last symbol(C,)
into a fixed length codeword.

(4) Shifting ' shift the leftmost (Cy+1) old
symbols out of the dictionary buffer and shift
(Cy*D)recently compressed symbols into the

dictionary buffer from the uncoded symbol

input source symbol S = 001001100011000...

1)initialization

match start pointer(C, = 0)

match length(C,= 2 )

2)shift and next match

C,= 5

/ last. symbol(C, = 1)

o[oEofof1]1]0]

symbols to be encoded
Code = (0,2,1)

C.= 1

0000

C,= 3

3)shift and next match
c,=0

dictionary buffer «—

/JLLJLJ QJ, 0]0f0]1]
Q.Ag,,,,,,,,,, .

Code =~ (5,3,1)

o

~C-1

o [0 f@'ﬂﬂl mﬂo

Code = (0,4,1)

|
+—» uncoded symbol buffer

Fig. 1. LZ compression process
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buffer.

(5) If the current symbol is EOF, encode
the EOF and finish the encoding. or else go
to step (2).

If there is no match or the length of the
champion substring is less than two or three,
then data expansion problem can arise rather
than compression. Namely, when there are
few duplicated data patterns, the compression
efficiency will be very low.

The following method is adopted to avoid
the expansion problem in the case of text
data™. The first byte of the codeword can be
the last symbol which is represented in ASCII
code. Then the unused bit(most significant
bit) can be used as a ‘tag bit’ which is set to
‘1" if the next two bytes indicate the pointer
and the length. When the match length is
less than 3, the tag bit is set to ‘0" to repre-
sent that the following byte is the uncom-
the ASCII code
itself (hereafter defined as a ‘literal symbol’).

pressed text data, i.e.,

During decompressing codewords. the decom-
pressor checks this tag bit to find out how it
should decode the codewords. When the tag
bit is ‘1", the decompressor uses the pointer
and the length in the codeword to decode the
codeword. Otherwise the decompressor outputs
the next byte in the codeword as a decoded
bit stream. Thus by using this reserved tag
bit, the expansion problem can be avoided
and compression ratio also can be further
improved. In the above method described.
every codeword must include one byte of
uncoded literal symbol with one bit tag.
Thus, symbols that may be compressed with
other symbols together must be coded as a
literal symbol in every codeword and the com-
pression efficiency is reduced. In our proposed
architecture, we utilize only one bit tag

instead of the entire last symbol of one byte.

We choose 1024 bytes(1024 symbols) for the
dictionary buffer and 16(4 bits) for the maxi-
mum matching length. Therefore, 10 bits and
4 bits are required to encode the match point-
er and the match length each. With our dic-
tionary buffer size and maximum match
length, the threshold length of the data
expansion is 2. When the maximum matching
length is more than or equal to 2, then the
compressor transmits the pointer and the
length with tag bit ‘1'. And when the length
is less than 2, it transmits one uncompressed
symbol with tag bit ‘0" and does not transmit
neither the pointer nor the length. Therefore.
the codeword representation is 1, match
pointer and match length, i.e., (1, C,, Cp, or
0 and a literal symbol, i.e. (1, symbol). Thus
the size of one codeword is 15 or 8 bits.

. Hardware Algorithm for LZ
compression

1. Derivation of systolic algorithm

Here, we illustrate the LZ process with a
simple example. Let us define that ai is the
ith symbol in the dictionary buffer and bj is
the jth symbol in the uncoded symbol buffer.
For the sequential algorithm in case of N=5,
M=3, the detection of the maximum match
substring involves five sets of comparisons as
shown in Table 1. Timel is the horizontal
time index and time2 is the vertical one and
both progress sequentially.

In the Table 1, the symbol,

equality operator between two symbols.

*  means the

Consecutive match length is calculated for
five sets. The index of the set with the maxi-
mum matching length is the match pointer
and its length is encoded. This sequential
algorithm needs O(NM) comparisons.

To derive a systolic architecture, let us
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Table 1. Sequential operation flow for L7 Table 2. Systolic operation flow for LZ algorithm

algorithm(N=5, M=3)
1. LZ 4uelEs A a9 $HEE(N=5 M=3)

B2 LZYna3e Ae N28Y 52 38

Set time,

PE,; PE, PE, PE, PEs PEq

(1) (al*bl) [(a2#*b2) | (a3 *b3)

(2) (a2*Db1) [(a3*Db2) | (a4 *Db3)

time, (3 (a3*bl) |(ad4*b2) | (a5 *Db3)

(al*bl) (az*bl) (ag*bl) (34*b1) (35*b1)
time (a2 * bz) (33 * bg) (34 * bz) (85 * bz) (b1 * bg)
(83 * bg) (34 * b-;) (35 * ba) (31 * b3) (bg * ba)

(4) {a4 *bl) {(ab*b2) | (b1 *b3)

set (1) (2) (3) (4) (5)

(5) (a5*Dbl) |{(bl *b2) | (b2 *Db3)

transform the comparison sets into the fol-
lowing sets shown in Table 2.

Every PE, performs one of three operations
in the vertical column at every cycle. Because
five PEs performs the operation simultaneous-
ly. the above matching process can be done in
3(=M) cycles. So this transformed structure
consumes O(M) time and has a better perfor-
mance in processing time compared with the
sequential algorithm which consumes O(MN)
time.

Our architecture needs only M or less time
for encoding one codeword and processes one
symbol per cycle. and no accumulated shift
operations are needed. This is the reason why
our architecture has better performance than
other ones™’" "
due to adopting label update method(LUM)

which will be explained later.

. This improvement is mostly

2. Hardware Algorithm for Compression

As mentioned before, the functional biock
diagram is composed of four main blocks as
shown in Fig 2. The buffer Q located to the
right of the Match Block stores the input
symbol to be compressed and distributes it to
all PEs concurrently. Note that the M-sized
uncoded symbol buffer is not needed in our

architecture because the symbols in PEs are

2006

shifted simultaneously at every cycle. Each
PE compares the distributed current symbol
with the dictionary symbol stored in each PE
and outputs match hit signal ‘I' when two
symbols are identical. and otherwise match
hit signal ‘0. The Consecutive Hit Checker
gets match hit signals from all PEs in the
Match Block and monitors the consecutive
hits.

As it proceeds. the Consecutive Hit Checker
filters out disqualified candidates and finally
finds the champion substring. The Pointer
Generator and the Length Generator extract
the match pointer and the length of the
champion substring by the result of the CHC.
And the Code Packer combines the pointer
and the length into a codeword if the match
length is more than one. Otherwise one
uncoded symbol is output.

In the above process, every symbol in PE; is
shifted left in a systolic manner. To make an
easy understanding of the proposed architec-
ture, we show an example whose dictionary
buffer size is 16 bytes (see Table 3).

The register in each PE is reset at initial-
ization and later carries one symbol(dictio-
nary symbol) to the left neighboring PE at
each cycle. Symbols to be compressed are

input into PEy one at time. We do not need

www.dbpia.co.kr
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il Resat
L v 4-—
PE,|«—PE,[«+{PE,|[*— ¢ ¢ ¢« «PE, 0}“
) |
PE-Based Match Logic Sr:,‘;:z.c
Symbol
| P m; break

Consequtive Hit Checker R

R v

Pointer Generator Length Generator 4—--

log,N c, C, log,M
v

Code Packer

i 1 i log,N+ logM + 1

Codesync Codeword

Fig. 2. System diagram of the proposed architecture

38 2. A 728 A28 tie]oja

the uncoded symbol buffer, but only one byte
Q register to latch and distribute the symbol
ready to be compressed. Now, as shown in
Table 3, we explain the compression process
in detail. First, let us assume that some com-
pression process was done and the string
‘THESE®ARE®YOURSQ®" is stored in the
Match Block in such a way that ith symbol
resides in PEi and the string "HERE®YOU®
ARE..." is ready for the next compression.

In Table 3, the vertical column represents
the time and the symbols to be compressed,
and the horizontal upper row line represents

the symbols stored in each PE. The combina-

tion of the match result(A) and the updated
label(B) is denoted as (A/B) for each PE in
the lower row line. The PE with label value
‘1" means that it can be one of the champion
candidates and the one with ‘0’ is the dis-
qualified candidates.

To make the explanation simple, all labels
are set to ‘1’ at time t,. This means that all
PEs can be the champion candidates at the
first cycle. At time t;, each PE compares the
current symbol ‘H' with its own symbol and
PE2 generates a match hit signal ‘1". Its
label is maintained at ‘1’ and those of the

others are reset to ‘0'. At time t,, the sym-

2007

www.dbpia.co.kr



260

HEBR2 S A LE 95-7 Vol.20 No.7

Table 3. An Example for the proposed hardware algorithm for LZ compression.
(dictionary size is 16(=N). X means unknown state.)
E 3 LZ 4% 4% AtE studo] dnede o,

(AFd9) Z7l= 16G=N)el2 X A#AA)

oL g
XAy

B g golg)

PE, | PE;| PE; | PE; | PE; | PEg | PE, | PEg | PEq | PE)p | PEy; |PEL, | PEy3 | PEy | PE;s | PEjg

4 T H E S E © | A R E ® Y O U R S ®©
X/1 | X/ XA X/ | XA XA XA X[ XA X1 XXX/ X1 X | X/

H/t, T H E S E © | A R E ® Y 0 U R S ©
0/0 | 1/1| 0/0 {0/0 | 0/0 | 6/0 {0/0 | 0/0 | 0/0 | 0/0 { 0/0 | 0/0 | 0/0 | 0/0 | 0/0 ] 0/0

B/, H E S B ® A R E © Y 0 U R S ® H
0/0 | 1/1{ 0/0|1/0 { 0/0 | 0/0 | 0/0 | 1/0 | 0/0 | 0/0 } 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0

R/t, E S E| ® A R E ®© Y O U R S ® H E
0/0 | 0/0| 0/0{0/0 [ O/0] 1/1}0/0 | 1/0 }0/0 | G/0 { 0/0 | 1/1 | 0/0 { 0/0 | 0/0 | 0/0

B/t S E ® | A R E | ® Y O U R S ® H B R
0/0 | 1/0| 0/0{0/0 [ 0/0 | 1/1|0/0 | 1/0 |0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 1/0 ]| 0/0

O/t B ®© A R E Y ) U R S © H E R E
0/0 | 1/0] 0/0{0/0 [ 0/0 } 1/1|0/0 | 1/0 | 0/0 | 0/0 § 0/0 | 1/0 | 0/0 | 0/0 | 1/0 | 0/0

Y/t ® A R E 6] Y O u R S 0] H I R E ®
0/0 | 0/0 | 0/0}10/0 | 6/O | 1/1[0/0 | 0/0 }0/0 | 0/0 | 0/0 ] 1/0 | 0/0 { 0/0 | 1/0 | 0/0

O/t A R E | ® Y 0 U R S © H E R E ® Y
0/0 | 0/0 | 0/0 1 0/0 | 0/0 } 1/1[0/0 | 0/G | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 1/0 | 0/0

Uty R E @l Y ) U R S @ H E R I ® Y 9)
0/0 | 0/0} 0/0 |0/ | /0 | 1/1}0/0 | 0/0 }0/0 | 0/0 | 0/0 | 0/0 [ 0/0 | 1/1 | /0 | 0/0

O/t E ®© Y 0 U R S ® H E R E ® Y 0 U
0/0 | 1/1] 0/010/0 | 0/0 ] 0/0 | 0/0 J1/1 10/0 | 0/0]0/0]0/0[1/1]0/0]0/0] 0/0

Aty ® Y 9] U R S ® H B R L O] Y ) U 0]
0/0 /01 0/010/0 | 0/0 | 0/0 | G/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | ©/0

R/, Y 0 U R S ©® | H K R 0 ®© Y ) U ® A
0/0 | 0/0| ¢/0 | 1/1 ] 0/0 | 0/0 | 0/0 | 0/0 | 1/1 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 { 0/0

B/t 0 U R S © H E R B O] Y 0O UJ ® A R
0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 1 1/0 | 0/0 | 1/1 | 0/0 { 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0

oy U R S ®© H E R L ® Y 9] U © A R B
0/0 | 0/0] 0/0]1/0 ] 0/0] 0/0]0/0 | 0/0 [1/1 | 0/0 ] 0/010/0 {1/0 | 0/0 [ 0/0 [ 0/0

bol in PE,, is shifted left into PE, and new
symbol ‘E' is distributed to each PE whose
match result is shown in Table 1. The label
of PE, remains at ‘1’ due to the consecutive

match. Of course, the symbols in both PE,

2008

www.dbpia.co.kr

and PE; match the current symbol. However,

since they were excluded from the candidates

at the previous time t;, their labels are main-

tained at ‘0’ until the champion substring is

chosen. At time t;,

there is a mismatch in
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PE;. so the pointer of PE, becomes the match
pointer and the number of matches until now
becomes the match length, and thus the first
codeword, (tag bit, match pointer, match
length), is (1,2,2). During time t;, PE,, and
PE,, are entitled to new champion candidates
for the next substring due to the match hit
in its location. The other PEs are disqualified
for the champion candidate. As the process
goes on, the consecutive hit match is contin-
ued in PEg until time t;. Therefore the next
codeword is (1,6,6). At time t9, PE2, PES8
and PE;; which contain the symbol '®
become the new champion candidates and
have their labels set to ‘1'. But at time tyq.
there is no match of symbol ‘A’. that all PE
labels are reset to '0’, and the symbols '®
and ‘A’ are encoded as literal symbols, i.e.,
(0,®), (0.A). respectively. During time t1l
through t,3, codeword (1,9.3) is obtained by
the similar process.

The above example described can be sum-
marized as the following compression proce-
dures.

(1) By reset, the label in each PE is reset to

‘T simultaneously.

(2) PEi generates the match hit signal ‘1" if
there is a match between the dictionary
symbo! in PE; and the symbol to be com-
pressed, and otherwise PE; generates the
match hit signal ‘0.

(3)By the combined condition of the match
hit signal in step (2) and the current
label, the update label is obtained as fol-

lows.

A: Case 1 : match hit signal == ‘0’ .
Current label == ('
- Maintain the label value at ‘0.
- Go to step (2).
Current label == 1’

- Reset the label to ‘0.

- If the other labels are all ‘0,
then generate the codeword with
the pointer and the length of the
champion substring. If the value
is less than 2, the codeword is
assigned a literal symbol.

- The current label of PE; is updat-
ed with the current match hit
value.

- Reset the counter which counts
the match length.

- Go to step (2).

B: Case 2 : Match hit signal == ‘1’
Current label = 1’
- Maintain the label value at ‘1".
- Match length is incremented by ‘1",
- Go to step (1) if the match length
is the maximum allowable length.
otherwise go to step (2).
Current label == 0
~ Maintain the label value at ‘0’
- Go to step (2).

When the current label is ‘1’ and the
match hit signal is also ‘1", this means that
there is a consecutive hit, so we keep the
current label remained, and check out if
there is any match in the following symbol at
the next cycle. When the current label is ‘0",
we maintain the current label at ‘0" until the
‘break’ of the champion candidate happens(this
means that until the champion substring is
determined). The label is renewed according
to the current value of the match hit signal.
If the champion substring is determined, the
match pointer can be extracted from the pre-
vious label of PE array using a priority
encoder.

The maximum length is obtained through a
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incremental counter which counts the match
hits of the champion substring and stores it
when the ‘break’ happens. After that. the
counter is initialized for the matching

process.

V. System Design of High Throughput
L.Z Compressor

In this section, we describe the system
which realizes the LZ algorithm discussed
above. The symbol 2 in the next figures and

paragraphs denotes a precharge signal.

A. Processing Element
Fig 3 shows the internal block diagram of

the Processing Element(PE) which generates

match hit signal mi and the current label sig-
nal L;. The label Li in PE; is reset to ‘1" at
system initialization so that all PEs are enti-
tled to the champion candidates. Signal
‘break’ is used to update labels whenever the
champion substring is determined. The Break
signal originates from the Consecutive Hit
Checker whose value is ‘1' for the permission
and ‘0" for the prohibition of update. When
disqualified for champion candidate(m;==0). L;
is reset to ‘0’ by the m; signal. Once L; is
reset to ‘0, then L; remains at ‘0" regardless
of m; throughout the current substring

matching process.

B. Consecutive Hit Checker

Fig 4 illustrates the internal block diagram

Sd distributed symbol

Sn ¢— R, l¢ Sp
« symbol to next PE symbol from PE,,, -
. b ‘

Comparator

Hply
4

Reset

~l‘G—r~~——“:“ Break

PEi

Fig. 3. Internal block diagram of the Processing Element
1% 3. HAAHPE)Y YR H&delo] 1Y

2010

www.dbpia.co.kr



B/ER-A 8 gE gnddd TUY BENY VIS = dF 263

j DO~ — Break -

i,

Fig. 4. Internal block diagram of the Consecutive Hit Checker
a8 4. AEARHAY UF 89 rhelojay

of the Consecutive Hit Checker which gener-
ates the ‘break’ signal to indicate whether
the champion substring is determined or not.
After a precharge cycle, the ‘break’ signal is
evaluated as ‘0’ if there exist any champion
candidates, otherwise evaluated as ‘1’ to
inform all PEs of the beginning of a new
matching process. A novel and high through-
put dynamic architecture was proposed for
this implementation by V. G. Oklobdzija™.

C. Pointer Generator

The Pointer Generator(PG) converts the
current labels to the matching address C, and
transfers it to the Code Packer. At every
cycle, PG performs the priority encoding with

the current labels and stores its result into a
pointer register. And when the ‘break’
occurs, the pointer latched at the previous
cycle becomes the matching pointer of the
current codeword and this pointer is output.
Two stage pipelined priority encoding struc-

ture was published previously™.

D. Length Generator

The Length Generator(LG) is the counter
which indicates the number of match hit suc-
cesses. The counter increments by one when-
ever the consecutive match hit is encountered
after the system initialization and its count
value is stored in a length register. The
counter must be reset whenever the ‘break

2011
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happens. In this case., the match length is
the value stored in the length register just
before the the ‘break’. To prevent overflow
in the match length. ‘break’ is reset to "0’
when the accumulated match length surpasses
the maximum count. Then a new matching

procedure is initiated.

E. Code Packer

The Code Packer(CP) makes a codeword
using a match pointer from the PG and a
match length from the LG. or one symbol for
a literal symbol when the ‘hreak’ occurs. If
the match length is less than 2. the codeword
is encoded into a literal symbol which con-
tains one tag bit(0), and one symbol. If the
match length is equal to or more than 2.
then the codeword is encoded into a combina-
tion of one tag bit(l). match pointer, and
match length. The proposed architecture has
constant input rate but variable output rate
due to the characteristics of the algorithm
itself. Therefore. there has to be a synchro-
nization signal for output validity.
‘Codesync’ is used for this purpose and is
produced by the ‘break’. The 'Codesync sig-
nal ‘I" is for valid output codeword and ‘0’

for the invalid one.

V. ARCHITECTURE FOR LZ
DECOMPRESSION

This section explains the LZ decompression
algorithm and our proposed architecture. The
decompressor processes one decompressed sym-

bol per cycle.

A. Decompression Process
To decode the codeword obtained by the
modified LZ algorithm. the decompressor

must have a dictionary buffer of size N for

2012

storing the recently decompressed symbols.

Decompression process is summarized below.

(1) Initialize the dictionary buffer with ‘0.

(2) Fetch the codeword(tag, match pointer(Cp),
match length(CD).

{3) If th tag bit is ‘1", choosethe dictionary
buffer part which corresponds to Lhe
match pointer C, and go to step (4).

If the tag bit is ‘0'. input the symbol
following the tag bit into the dictionary
buffer and go to step (2).

(4) Perform the following operations until
the C, is counted down to 0.

- Shift left all the symbols in the dictio-
nary buffer at every cycle.

- Mux all the dictionary registers to the
right-most register of the dictionary
buffer selected by the C,.

{5) If EOF is encountered, finish the decom-
pression process after N remaining sym-
bols in the dictionary buffer are output.
Or else go to step (2).

While the decompression continues, decom-

pressed symbols are output from the left-most

dictionary register after N+1 cycles from the

initialization.

B. Architecture for decompression

The proposed decompressor is composed of
mainly four blocks as shown in Fig 5
Dictionary buffer, Pointer Selector. Codeword
Loader, and Symbol Selector. The Codeword
Loader generates the ‘Joadsync signal to
accept new codewords. The ‘loadsync signal
is synchronized by the ‘finish’ signal from
the Symbol Selector. If the tag of the current
codeword is ‘0'. which means a literal sym-
bol, the Symbol Selector controls the MUX to
multiplex the direct symbol to the dictionary
buffer. Then it generates the ‘finish signal

to accept the next new codeword. If the tag

www.dbpia.co.kr
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Dictionary Buffer

N Symbols

Pointer Selector

Symbbl
Selector

Finish
selected | |Direct
symbol | |Symbpl

Code

L

Decoded
Symbols

) Loader

Pointer CP

L

Loadsync Codeword

Fig. 5. Block diagram of LZ decompressor
I8 5. LZ 44#718 B8 tojoj 1y

is ‘1", the Pointer Selector selects the dictio-
nary register corresponding to the C, and
inputs this symbol to the right-most input
buffer. In this case, the Symbol Selector
loads - the C; count into a down counter and
decreases it by one per one clock cycle. When
the count becomes ‘1', the Symbol Selector
transmits ‘finish’ signal to the Code Loader
which generates the ‘loadsync signal to

receive the new codewords.

V. Conclusions

In this paper, a novel systolic architecture
is proposed for the Lempel-Ziv data compres-
sion which yields high throughput rate. No
idle cycles for accumulated shift are needed.
Input bytes are processed one per every clock
cycle without waiting the ‘shift and update’.
Thus the data input rate of 100 mega symbols
per second is obtained when the clock fre-
quency is 100 MHz. Based on our systolic
hardware for LZ algorithm, the VLSI archi-

tectures for encoding and decoding LZ-based

modified algorithm are developed.

In encoding process, a novel label updating
method is proposed for consecutive hit check
to remove accumulated shift cycles which are
the frequent drawbacks of the other architec-

tures[ﬂ 9.10.11)

. To speed up the clock frequency,
a dynamic structure is also proposed for the
label updating unit which was one of the
critical paths of our system.

Our architecture is very modular and thus
can be expanded very easily to various dictio-
nary sizes. For example, the dictionary size
can be doubled by cascading two existing 1024
byte architectures with slight modifications to
the counters and the 'break’ signals. and
address generation logic. The derived systolic
architecture demands simple control circuitry.
For the encoder, no control signals are pro-
vided via external pins except a reset signal.
Comparison, shift and update are automati-
cally done at every cycle. Complex signal
such as barrel shifter control signals are
needless because the accumulated shifts are

deleted in the proposed architecture.
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Moreover the ‘break’ signal and label update
can be implemented with minimal hardwares.
Static versions can be considered instead of
the dynamic circuits shown in Fig 3 and Fig
4. In this case, OR gates can be used for the
Consecutive Hit Checker, and several gates
including clocked gates can be used for label
update. The architecture with the static cir-
cuits require less design time than the one
with the dynamic circuits with minimal speed
decrease.

The critical path lies in the PE and the
CHC. The static version of the proposed
Lempel-Ziv compressor was verified through
verilog HDL.(Hardware Description Language)

and the source code was synthesized using
0.6 xm CMOS COMPASS ASIC Synthesizer.
The critical path is composed of a 7-bit com-
parator, some clocked gates, and one 1024-
input OR gate. The netlist simulation result
shows that the critical path delay is 8.9 ns.
According to our netlist simulation imple-
mented in 0.6 #pm CMOS technology, the chip
is expected to operate up to 100 MHz(100
mega samples) which is fast enough for real
time data compression applications like text
and image compression over the communica-

tion channels.
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