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New Approaches to Robust Comer Point Detection Using Constrained
Regularization and Mean Field Annealing Techniques
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ABSTRACT

In this paper, we propose two approaches to consistent boundary representation for solving the comer point detection problem
for computer vision applications: a constrained regularization(CR) approach and a mean field annealing(MFA) approach. The cur-
vature function computed on the preprocessed smooth boundary, which is obtained by either the CR approach or the MFA
approach, is consistent. Thus, we can consistently detect corner points in this curvature function space. Ideal corer points rarely
exist for a real boundary. They are often rounded due to the smoothing effect of the preprocessing, In addition, a human recog-
nizes both sharp corner points and slightly rounded segments as corner points. Thus, we establish a criterion, called “comer sharp-
ness”, which is qualitatively similar to a human’s capability of detecting comer points. We use comer sharpness to increase the

robustness of the proposed algorithms.
r #

B =fdMe BFEHA 8€ A8 P 2o glo] 2dse FAHE #As) 9% EAY boundaryg
ZAngA F83e F 7R H2WY & constrained regularization® °1-48lE W mean field annealing®
o] #3le] FVH-E AudA Fe YUE ALPY. constrained regularization £¥ mean field annealing22
AA2¥ boundary25H 7 TE ¥ Andv, med 2 ZE #5 M AndA zude L £ UA
gtk 44 boundary delA AMAA ol A WAL A EAEA ¥ettn € F U F, AAD 33 B
g ole AE mtRd £ Ut T, A% A|GE ok F dFEE 3uy Badeld 4t siRE IUE IUHPS
24 4@k depA, JAAIZe] YA E 2y $8H FAY FHE R & corner sharpness& A9 @), Azt
o] Aztol e AT AYF F A2 corner sharpness®& HE3to 1@ IUFPE vln A},

‘AAdtn AvFetsy
WCER : 95250-0721
#B%AF 19954 TR 21H

www.dbpia.co.kr



268

WERE $ea CiE '95-12 Vol. 20 No. 12

[ . Introduction

The human visual system uses two-dimen-
sional(2-D) boundary information to recognize
objects since the shape of the boundary usual-
ly contains the pertinent information about
an object. Thus, representing a boundary con-
cisely and consistently is necessary for object
recognition. There are two main categories in
representing objects in general: global meth-
ods and local methods. The moment-invari-
ants. the Fourier Descriptor, and the circular
autoregressive model are commonly used glob-
al methods. They are often easy to obtain
and easy to use in a matching problem.
Features extracted using global methods are
robust with regard to noise. In addition.
global methods are invariant under rotation,
scale. and translation. However. they do not
provide local information on the boundary so
that they cannot handle partially occluded
objects.

In local methods. the boundaries need to be
segmented in order to represent them analyti-
cally. In general, there arc two possible
approaches to the boundary segmentation
problem. One is to detect corner points. This
method mainly depends on a curvature func-
tion. Hence. computing the curvature func-
tion properly is very important for consistent
corner point detection. There have been sev-
eral corner point detection methods developed.
However, the existing methods do not lead to
consistent boundary representation since they
inconsistently detect corner points. The other
approach is to obtain a piecewise-linear polyg-
onal approximation to the digitized boundary.
The vertices found in the linear polygonal
approximation are usually called break
points. However, this method may cause dif-

ferent boundary segmentation with regard to
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the starting point. While this approach may
work well for the boundary which has many
line segments, it is not a good method for a
smooth or curved boundary since a large
number of line segments are necessary to rep-
resent them.

We use corner points for boundary represen-
tation since it is well known(1l]) that the
information of the shape is concentrated at
the points having high curvature. We propose
two approaches to consistent boundary repre-
sentation in this paper: a constrained regu-
larization(CR) approach and a mean field
annealing(MFA) approach. We can consistent-
ly detect corner points from the preprocessed
smooth boundary obtained by either the CR
approach or the MFA approach. Ideal corner
points rarely exist for a real boundary. They
are often rounded due to the smoothing effect
of the preprocessing. A human recognizes
both sharp corner points and slightly rounded
segments as corner points. Thus. we establish
a criterion. called “corner sharpness’. quali-
tatively similar to a human’s capability of
detecting corner points, in which a little tol-
erance is given to recover slightly rounded
corner points.

This paper is structured as follows: In sec-
tion 2, problems of current methods to com-
pute curvature function on a digitized bound-
ary are discussed. Section 3 first introduces
the theory of a regularization technique and
a new method of boundary smoothing for cur-
vature estimation using a constrained regu-
larization technique. In addition, aneother
boundary smoothing method using a mean
field annealing technique is proposed. A new
method of robust corner point detection using
a criterion called corner sharpness is proposed
in section 4. Finally, discussion of the pro-

posed methods as well as concluding remarks
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are given in section 5.

1. Problem Statement

There are two possible approaches to com-
pute the curvature function on a digitized
boundary curve: one is performed in a dis-
crete domain and the other is performed in a
continuous domain. Many researchers have
developed several k-curvature methods to
estimate curvature in a discrete domain using
k-vectors on their leading and trailing curve
segment of the point{2-3). However, the com-
mon problem with them is determining a
unique smoothing factor k. We have exploited
the continuous domain by investigating sever-
al lowpass filtering techniques. Among other
things, Mokhtarian and Mackworth{4] used
Gaussian smoothing to compute curvature at
varying levels of detail. They convolved X(t)
and Y(t) with a one-dimensional(1-D)
Gaussian kernel g(t.¢) of standard deviation
o ie., X(t,o)=X(t)*g(t,e) and Y(t o)=Y (t)*
g(t.o). By the derivative theorem of convolu-

tion, the discrete curvature using Gaussian
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smoothing becomes(4):

x(t,0) = X(t,0) Y(t,0) — X(t, ) Y(¢,0)

[ X%t 0) + Y4t o)) (2.1)

We encounter the same problem as we
encountered with k-curvature methods in
determining a unique smoothing factor. We
must choose ¢ small enough to preserve valid
high frequency shape information, yet suffi-
ciently large to remove noise effects. Fig. 2-1
shows a gun boundary which is represented
by an 8-neighbor Freeman chain code. The
starting point is marked with "' and the

direction of tracing is counter-clockwise. Fig.
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Fig. 2-2. Gaussian smoothing: (a) e=1: (b) ¢=8.
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2-2 shows the results after Gaussian smooth-
ing. Varying ¢ produces results which range
from too noisy(s=1) to too smooth(e=8). Thus,
we can not consistently detect corner points

in this curvature function space.

. New Approaches To Curvature
Estimation

1. Constrained regularization approach

Regularization theory has been successfully
applied to several image restoration and
vision problems. The regularization technique
transforms ill-posed problems into well-posed
problems, providing consistent, unique. and
stable solutions. The main objective in solving
such ill-posed problems is the construction of
a physically acceptable and meaningful
approximation to the true solution that is
sufficiently stable from a computational point
of view.

Shahraray and Anderson(5) first applied
the regularization technique for the measure-

ment of the boundary curvature of a planar
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curve. They used the standard regularization
method with genecralized Cross-
validation(GCV) to find the optimal value of
the regularization parameter from the data.
GCV is a method for estimating a value of
the regularization parameter which does not
require knowledge of noise variance.
However. it may [ail catastrophically in some
circumstances, producing either no positive
smoothing parameter or a underestimated
smoothing parameter(6). In addition. the
GCV method is mathematically intense due to
many matrix decompositions and the require-
ment to obtain the inverse of large matrices.
We have knowledge about the quantization
noise, which is the dominant noise. In addi-
tion. Reinsch(7]) suggests that if the .oise
variance is roughly known. then the regular-
ization parameter should be chosen so that
the residual error is equal to the noise vari-
ance. By imposing the above noise constraint,
we can obtain the desirable result which is
appropriate for further processing in a short-

er time and a simpler way than the method
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Fig. 3-1. Curvatures for the gun boundary: (a) before CR: (b) after CR.
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proposed in(5). Thus, we proposed a CR
approach for consistent object representation
in the previous paper(8]. It combines a regu-
larization and a noise constraint to determine
a unique smoothing factor.

We applied the algorithm to the gun bound-
ary(Fig. 2-1) to see if the algorithm works
well for the real images. Fig. 3-1(a. b) show
the curvature functions before CR and after
CR. respectively. The resulting curvature
function was smooth enough to be used for
further processing and preserved sufficient

local information for corner point detection.

2. Mean field annealing approach

Problems involving the minimization of
functions that have many local minima have
been prominent in various engineering appli-
cations for a long time. The gradient descent
method is a typical example of a minimiza-
tion algorithm which may become stuck in a
local minimum depending upon the starting
point. Kirkpatrick et al.[9) developed the
Simulated Annealing(SA) technique to over-
come this problem.

Geman and Geman(10) used a Bayesian
approach for image segmentation. They
showed hat if the image can be modeled as a
Markov Random Field(MRF), there is an
equivalence between the MRTF and the Gibbs
distribution. They proposed a procedure called
stochastic simulated annealing(SSA). It con-
verges to a global minimum under certain
conditions. However, it is extremely slow in
practice.

Bilbro et al.(11] applied the MFA technique
while they were trying to segment range
images from a range sensor. They sought a
way to smooth out the noise without elimi-
nating the edges. They accomplished this by

using a global process that combines consis-

tent local measurements to infer global prop-
erties. MFA is an approximation to SSA
which replaces the random search by deter-
ministic gradient descents. This approxima-
tion makes the algorithm converge faster
than SSA.

Since a data point is correlated to its neigh-
bors in boundaries, we can model the bound-
ary as a MRF. Thus., we can use the MFA
technique for the problem of boundary
smoothing. We pose the boundary smoothing
problem as the minimization of the sum of a
“noise” term and a “prior” term. Thus, we

choose a Hamiltonian as follows:
H(f, fn) = H{(f,. fa) + H,(f,) (3.1)

The noise Hamiltonian (H,) is

LB —fulB) *

5o (3.2

H(fo fm) = Ek
where ¢’ is a noise variance. The prior
Hamiltonian (H,) represents the measure of a
certain local property. This can be written as

2

= s L _ M
H{1D = =08 ko o 57 ) 3.3)

4, is the operator on the neighborhood of
the kth element. We use a discrete form for
the second derivative for 4, as in the CR
approach because it represents the roughness
of data. b is a weighting factor for the prior
Hamiltonian against the noise Hamiltonian,
and T is a control parameter known as
“temperature”.

The Hamiltonian, H(f,. f,) may have many
local minima and behave poorly in other
ways. Hence, instead of minimizing H, we
approximate H with a simple convex function
Hy, which is easy to minimize. H; must
depend on a set of parameters to be similar

to H. Then. we adjust those parameters in
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such a way that H; will be similar to H. We
choose H;

i £ = £ 1 alh) = AR (3.4)

The above H,; has only one minimum since
it is a paraboleid. Thus., minimizing H, is
simple. We have a convex form and we can
find the #'s which make H; similar to H.

To find #. we minimize the expectation of
the difference between H; and H; with
respect to # to make two functions similar as

follows :
EMF = < H(fe. fm) "H(}(#, fe)>,. \/35)

Minimizing Euye insures that Hy(e. f,) is
similar to H(f, fg). It can be shown{11] that
the minimization of Eyr is equivalent to the
minimization of (H(f, fy)), <H,> is constant
and (H,» has the following asymptotic behav-
for:

CHp

T=0 H, and

<Hp (3.6)

T—¢ o0 O

Thus. minimizing (H(f,. fg)) is equivalent

to minimizing H(x, fg). Conclusively. we will

4

- L) =2ph) )] ") (3.7)

We perform the minimization of Eq. (3.7)
by annealing on T. That is, we begin with a
large value for T since Hp=0 for large T and
minimizing the H of Eq. (3.7) is equivalent
to setting # = fp. Then., we start the algo-
rithm with this initial condition. gradually
reduce T, and at each new value of T. we
minimize H by using gradient descent or
other standard minimization methods.

From Eq. (3.7) and the above annealing
procedure, we can see the algorithm is influ-
enced by the following parameters: o(the
standard deviation of the noise), b(the rela-
tive magnitude of the prior term), Ti(the ini-
tial temperature), and T(the final tempera-
ture). The decrement factor in the annealing
procedure is also important. However, it was
empirically shown that a geometric annealing
schedule: T«aT(a{l) is good enough(12]. We
applied the order-of-magnitude analysis to
our parameter estimation and obtained the
following estimated parameter values: T;=6¢°
T,~0.01, and b=2. 8@,

As shown in Fig. 3-2(a). the original gun

boundary was smoothed well enough to be

Fig. 3-2. (a) Result of CR: (b) result of MFA

minimize
_s L B —fn(B)] ,2 b
HonS) = B0 b
(a)
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Fig. 3-3. Curvature after MFA,

used for further processing with the CR
approach. but some corner points were not
preserved well. We applied the MFA algo-
rithm for the same boundary. Fig. 3-2(b)
shows the smooth boundary obtained by the
MIFA approach based on the above estimated
parameters.

Fig. 3-3 is the corresponding curvature
function. We can clearly see that the MFA
method gives better performance in a sense of
corner preservation. Thus. we can detect cor-
ner points easier with the MFA approach
than with the CR approach. However, it
takes more time for detecting corner points

due to the annealing procedure.
V. Robust Corner Point Detection

A human recognizes slightly rounded seg-
ments and sharp corner points as corner
points. Furthermore, corner points may be
slightly rounded due to the smoothing effect
of preprocessing. As the corner point is
rounded, the corresponding curvature func-
tion is spread over the neighborhood. while

the overall tangent angle change around that

corner point remains the same. When the cor-
ner point is spread over a tolerably narrow
number of neighbors. it still can be recog-
nized as a corner point. However, when the
corner is rounded too much, it should be rec-
ognized as a curved segment. We defined cor-
ner sharpness as a curvature change(46/4s,
in a normalized curvature function space)
within a unit perimeter(4s) of a simply
closed boundary. We also determined the
threshold value(8,=207) for the corner point
detection in the normalized curvature func-
tion space(8).

The CR method slightly smooths out corner
points and the resulting curvature at corner
points are spread over the neighbors. Unless
we give a little tolerance when we detect cor-
ner points in this curvature function space.
we may miss some corner points. Thus, we
detect corner points based on the following
empirically derived result when we use the
CR approach(8):

Each point on a boundary is considered as a
corner point if one of the following condi-
tions is satisfied:

(D L‘k xds=20r (&) LM xds= 30r

3ds (4 1)
(721) L xds = 40r

Only the points which satisfy one of the
above conditions are considered as corner
points in the CR approach. Fig. 4-1(a) shows
corner points for the gun boundary detected
by a number of human observers. Fig. 4-1(b)
shows corner points detected by using condi-
tion(i) of Eq. (4.1) with the CR approach. As
shown in the figure. two corner points were
not detected. This was due to the smoothing
effect at corner points with the CR approach.

However, we recovered the missing corner
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Fig. 4-1. Detected corner points: {a) by human observers. (b) by CR with condition (i).
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Fig. 4-2. Results of the MFA approach’ (a} normalized
curvature: (b} corner points.
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Table 4-1. The number of corner points detected in various methods.

Gaussian smoothing CR MFA
Human
=2 a=4 =8 method | method
Model-1 13 9 3 11 11 11
Model-2 10 8
Model-3 9 5 6
Input-1 17 11 15 12 13
Input-2 29 21 16 21 21 21

points by using condition (ii) and condition
(ii1). We were able to locate the same number
of corner points as those detected by the
human observers at almost the same positions
by using corner sharpness in the CR
approach.

We already have shown that the MFA
method preserves corner points very well, and
the resulting curvature function has large
and sharp curvature extrema. Thus, the first
condition of the above Eq. (4-1) is enough to
detect corner points in the MFA approach.
Fig. 4-2(a) is the normalized curvature func-
tion computed in the MFA approach. Fig. 4-
2(b) shows the result of corner point detec-
tion in this normalized curvature function
space. As shown in the figure, we obtained
the same corner points as in Fig. 4-1(a).
Thus. we can detecl corner points easier with
the MFA approach, while it provides the
same results.

Table 4-1 shows the number of corner
points detected in the various methods for
three model boundaries and two input bound-
aries(Model-1: gun. Model-2: hammer, Model-
3: wrench. Input-1: gunthammer, Input-2:
gun+wrench). We obtained the results of
human observers in the table by asking sev-
eral people to choose corner points in the

given boundaries. Fig. 4-3 shows the corner

points detected in various methods for Model-
1. As shown in Fig. 4-3 and Table 4-1, we
detected almost the same number of corner
points using corner sharpness and the CR
approach as human observers did. Our results
using corner sharpness and the MFA approach

gave equally good results.

V. Conclusion

We presented several different issues in repre-
senting 2-D boundaries in this paper. We proposed
new methods of boundary smoothing for curvature
estimation and robust corner point detection for
consistent boundary representation to overcome the
common critical problem of current boundary rep-
resentation methods.

We proposed two boundary smoothing methods:
the CR method and the MFA method. The CR
method resulted in slight unnecessary smoothing at
corner points. However, it did not cause any seri-
ous problem in detecting corner points since we
used corner sharpness to compensate for the unnec-
essary smoothing effect at corner points. On the
other hand. the MFA method preserved corner
points very well. Hence, we detected corner points
easier with this approach than with the CR
approach. However, it took more time to obtain
the smooth boundary due to the annealing proce-
dure. The performance of the CR method and the
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MFA method in detecting corner points were as

good as that of the human observers.
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