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Numerical Modeling of Hopfield Neural Networks
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ABSTRACT

This paper discusses numerical performance modeling of fully coupled continuous-time networks utilizing con-

tinuous activation functions, finite input resistance of neurons, and other parasitic components within the neural

system. Both time-domain performance modeling and static numerical modeling of the networks are characterized

and compared.

1. Introduction

Single-layer feedback neural networks, also called
gradient-type networks, have recently received wides-
pread attention in the technical literature [1-4]. Most
of the published results, however, deal with the dis-
crete-time, discrete-output networks. The discrete-time
networks represent limit case of continuous-time net-
works which involve continuous activation functions
and change the output values continuously rather than
discretely. Some of the postulates regarding both the
convergence and performance of discrete-time net-
works remain valid for their continuous-time counter-
parts. There are also numerous differing aspects in
both types of networks. These aspects are discussed in

this paper.

II. Description of Continuous-time Actual
Neural Networks

The model of a fully coupled neural system consists
of n neurons each mapping the input voltage #; of the

i-th neuron into the output voltage v; through the ac-
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tivation function f{u) which is the common static
voltage transfer characteristic(VTC) of the neuron.
The common choice is the so-called sigmoidal function
vi=flu)=[1 +exp(—am)]™', i=12 .,n

The neurons’ gain value A is assumed to be finite.
Conductance w;; connecls the output of j-th neuron
to the input of the i-th neuron. The i-th input conduc-
tance and capacitance are of non-zero values, and
equal to g, C;. respectively.

The network is described by following equation[9]

c d—%=_1_)(l) +i-Gul®) (1a)

v@)=f(ult) (1b)
where, using customary notation, we have

C =diag|Cy, Cs, -, C,]

G=diagl ¥ owiitg, L wytgy, o, L Wy gl
. P .

J= F=1

The postulated energy function E(2) for this system
has the following form [6]
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The negative gradient vector of the energy function

(2) can be computed as [10]
~VEQ)=Wv—-Gu +i 3)

By comparing (3) with the right hand side of (1a) it
can be written as
du

-VEwp)=C at (4)

. Dynamic Analysis of Continuous-Time
Networks

The vector field method is presented below as a ool
for analysis of gradient-type neural networks. This
method can generale trajectories capturing the trans-
ients and equilibrium points in v” space. it enables the
complete dynamic solutions for all possible initial con-
ditions, finite gain values of neurons, while including
parasitic conductances and capacitances which occur
in actual neural systems[10].

. 1 z
u,-:?:; @ +;§ Wiivi—Giws), 1=1,2,..,n (5)

Equation(5) can now be expressed in the output

space as follows

%:W[g(m, i=1,2 ...m (6)

and used to compute the derivatives ¢,(2), ¢:(v), ...,
¥n(). As a result, the vector field is obtained that
indicates the complete trajectories of the system. The
components pi(7) of the vector field for single-layer
feedback networks(8] can be explicitly computed as

=220 G WG, e,

1 7=1
i=1,2, .. n (7)

780

Components ¢; of the computed vector determine
the motion of the system output in the direction v;.
Approximated actual displacements of the output are
equal to products g AN f.

The approximation for »f*' is
ki 3 .
v, ' =0f Ak i=1,2,..,n (®)

where Ap; is the vector component of a displacement-
step. It is equal Lo the product of the normalized vector

component by a displacement-step
Avk=nlpeNd  i=1,2,...n (9)

where d is a user-seleclable displacement-step, and
n(pi(v*) called normalized vector field component is
defined as follows

(v )

n(pio*) = i=1,2,..,n (10)

(£ s’

Thus, the length of the sum of the vector compon-
ents of a displacement-step is equal to the displace-
ment-step. The stable displacement-step depends on a
system. The output values of the Hopfield networks
are in the region [0, 1]. The reasonable displacement-
step for the stable system can be chosen as d =0.01.

Thus, the system moves by 0.01 each iteration.

Case Study

A 2-bit A/D converter representing a class of optim-
ization, or gradient-type networks{4, 5], is selected as
a case study to test the method. The state space equat-

ion(1) describing the converter are

(vob.t():x'—().S --21)1~(g’o—-2)u0 (1])

Ciy=2x—-2-2v— (g, —Du,

Where « is the analog voltage value to be converted
Lo the binary reprsentation v =[vo, v1}'. Equation (11)

can be rearranged with form (7) to follow form
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The normalized vector field of this system can now

be produced for known values of x, gi, C;, A (i=1, 2). o AN

Fig. 1 provides a comparison of the vector field an- 095

alysis with the actual energy map of the system for ‘

the case x=1.6, A=2, C;/Co=1, g=2.5. There is one 0GR N

saddle point and two minima indicated by vector in N o -
Fig. la. The actual energy : ’ N e

004 GuH uos

LIST OF CAPTIONS

Fig. 1 Veclor field energy mups comparison x=1.6, 1= 2,

a | V1 7 CifCo=1,p=25
| X7 - T/ Co=1, g =125
09 PANNANC S a)vector ficld  b)energy map
L AN IS
OSL NN e c)macro map for upper left corner
RN
S I A/
. P AP APV AVar N
agt Tl AN . . S o
A N A A A \</ji/ S map with the third term of energy in Fig. 1b indic-
7 VAV
05 ; ; ; ’; ; ; i j ; // ’//// VARV ates the direction of movement of output in time. To
\ { . e .
ot 111 s s />/\ ’1 ’, /, ; gain more detailed insight into convergence, the en-
[ A AV AV AV SV AV AV SV SV AV VN ‘ . ..
0sN 1 11 NN i ergy map near one of the lwo minima v =10, 1] have
s NN
; ﬁ ; ;;;;j;;;;j%>\\ 1 been expanded as shown in Fig. lc. It can be seen
02 . ’ - .
P ////////////\\\\ that the energy minima ncar the corner is indeed
01 PSPPI D . .
b S within the unity square and very close to the corner.
Ll In summary, the vector field ach provides
05 04 06 08 n summary, the vector field approach provides a
L . Vo detailed insight into the transient behavior and stab-
o ility conditions of the network. Although the method
b) V1Og~ R < can be graphically illustrated only for n<3, it can be
‘J \\ applied to networks of any dimensional size.
08P~ -05
07 -06 . . .
S N V. Static Numerical Modeling
06 \\_ 07 '
05 \*06 In contrast to the dynamic analysis involving time-
04 \05 7-\ domain analysis in the preceding section, here we in-
03 §04 troduce the static numerical methods. They are relax-
02 \.03 ation algorithm and Newlon-Raphson mcthod. These
502 methods are based on the assumption that the con-
0.1 N\ . e .
\ tinuous-time system stabilizes in space v when the en-
02 04 06 08 vo ergy gradient (3) reaches 7cro.
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4.1 Relaxation Aigorithm and Convergence

The relaxation algorithm is based on the contraction
mapping thecorem. Here this algorithm is applied to
solve equilibrium points for the continuous-time net-
works having electronic components. However, con-
vergence of the algorithm is limited. This limitation is

presented in section 4.1.2.

4.1.1 Relaxation Algorithm for continuous-
time System

The continuous-time system moves down its energy

surface. Thus, the system stops moving and becomes

stable when the gradient (3) is zero. Using this partic-

ular property of the nctwork, the solution for mini-

mum E(v) in the oulput space can be written as

VE(p)=0 (13a)
Wv—Gu +i=0 (13b)

By using the above equation v; can be expressed as

follows

i " . .

z),:fl — 3 (wiv; +Zi)l, i=1.2,..n  (l4a)
(I,' J=1

The iterative numerical solution for v; can be model-

cd using the contraction mapping theorem as follows

vf”=f[ l, (i wijv) +i,»)], i=1.2,..,n (14b)
G\

This is a static relaxation algorithm suitable for nu-
merical calculation of the stable solutions as opposed
to dynamic, numerical integration related, algorithms
depicting the transients within the continuous-lime

network {9].

4.1.2 Sufficient Condition for Convergence of
(14)
The convergence of (14) to the unique fixed point is

guaranteed by the sufficient condition(7]

17

M Sﬁ. where K <1 (15)
ov; n

782

for each j=1, 2, ..., n and each component function f;

[4]. For f; specified by each equation in (14) we obtain

Afkw)  Aflw) dup

v cu; o Ov; (16)
where

AT R Ui

ou; (1 +e724)?

Based on #{) specified in square brackets of the
right-hand side of (16), the second derivative of the
chain in (16) can be expressed as
Du,- Wiy
= 17
v; G; {an

Combining (16) and (17) allows thc rewriling of

(15) as follows

Ae A wy;

i
Gre™? G | n (18)

n

The condition (18) can be further simplified by

noting that 1t is equivalent to

W

I +(2~nl

)e’“" +e‘“”']20 (19a)

I
n ¥

The binomial in brackets of the left-hand side of the
inequality (19a) should remain positive for all values
of the variable exp( —Ax;). This is fulfilled when the
quadratic equation cquating it to zero has no real
rools. The above condition translates to
wi;

1
[ —— (Z—nl —
4

i

)'zo (19b)

It is obvious that (19b) is fulfilled for

Wiy

<2 (20a)
G

—2<2—-ni

The above condition can be briefly expressed as

ey L {21b)

n

wy;
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Thus, the convergence of the relaxation algorithm
(14b) to the unique fixed point of (14a) is guaranteed

by the sufficient condition

4 G
A< min i=1,2..n {“ VT } (22)
j=L2 .. n n wi;
ity

It can be seen that the condition (22) for the net-
work with fixed conductances w;;, G; imposes bounds

on the highest values of neruons’ gain.

Case Study

The stability of the numerical solution using the
relaxation algorithm (14b) has been tested using the
same circuit as before.

Fig. 2 shows the fixed point iterations for x =1.3.
The numerical solution has been shown in the output
space using the background of energy contours given
(without the third term of (2)) as(8]

E(v) = 2000, +i’22 +20, —x(vo +201) (23)

It should be noted that the numerical relaxation
algoritm neither operates on the energy surface, nor
in time, and the contours of E(¢) are provided solely
for visualizing real transients in actual continuous-time
neural network. It can be noticed that there are two
minima of E(v) at v=[0, 1]’ or v =1, 0]". There is
also a saddle point at v=[.3 .4]" which divides the
bimodal energy surface.

Fig. 2a illustrates the stable relaxation algorithm
applied for A=13.5. Increase of A to 5 or above brings
instability of the relaxation modeling as shown is Fig.
2b. It should be noted that the values of maximum A
ensuring numerical convergence and computed from
sufficient condition (22} are much smaller than those
at which stable solutions could still be actually com-
puted.

In summary, a fixed point relaxation algorithm has
the potential of finding stable solutions of the actual

continuous-time single-layer feedback network dis-

cussed. The stability of the numerical solution using
this method, however, is severely restricted. Sufficient
condition (22) for numerical stability of the algorithm
would limit its application to networks with relatively
low gain neurons. In addition, the stable solution
obtained using iterations as in (14b), although mathe-
matically correct, may not be identical to the solution
of the dynamic system, even with the same starting
point. Saddle points are among the solution; they are

not, however, equilibrium points of the networks.

g —

b)

02 04 06 08 vo

Fig. 2 Relaxation Algorithm for network x=1. 3.
a)stable solution for A=3.5.

b) unstable solution for A =35.
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4.2 Newton-Raphson Method of Energy Function
Minimization

Below, another static algorithm which is based on
the Newton-Raphson approach is presented. Com-
pared to the relaxation algorithm, this method can be
used for any size network to find the stationary point,
or solution of the equation VFE(v)=0.

Formally, given the point # to be the current ap-
proximation of the stationary point, the next linear

approximation point can be obtained as
wt T =k = {1 F(u®) (24)

where F(z) is the energy gradient expressed in inpul

u space.
T W flu) —Gh Jr'z'l1
i
Flu)= l (25)
Y Wy flu;) = Grun +in
7=t
[ o o/, _‘q/_-p__‘
ofy of, 1y
Jat)= . T (26)
(7fndl afn—l ‘ﬁ'fnr I
L nfnfl ﬂfl 0w

This method always converges to a stable solution,
dependent strongly, however, on initial point #,. The
different initial point can cause a possibility for this
method to diverge rather than converge to the true

stationary point.

Case Study
The 2-bit A/D converler is selected to test this
method for finding stationary points. Equation (24)

for the 2-bit A/D converter[9] is

uy ! uh K
{ kH] :[ kl'—[.l(g)]

Uy

Haul)
. Qn
ey )

where

Jat) = 2-go , —2lv, —v})
_21(11()”‘1)6) 22—

HFuy)= =2v; +x~-0.5 _(go ‘2) o

F(ul): =20, +2x>—2—(g1 -2) U,

The Newton-Raphson method iterations for x=1.3
and A= 5 contrast the relaxation algorithm which fails
to converge for A =5. This method finds all stationary
points, two minima and a saddle poin! as shown in
Fig. 3. However, the different initial point causes di-
verging rather than converging (o one of the minima.

In summary, cven though this method is difficult of
its sensitivity to the initial condition and because it
costs much to calculate the inverse of Jacobian matrix

every ileration, the method can be applied to large

actual networks.

04 06

08 vp |

Fig. 3 Newton-Raphson Method for 2-bit A/D converter, x
=13and A=5

V. Concluding Remarks

The main focus of this paper had been the dynamic

and static numerical modeling of the actual Hopfield-
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type networks. The vector field method has been pre-
sented for dynamic analysis and it has been compared
with numerical relaxation formulas and the Newton-
Raphson method. It has been shown that the relax-
ation algorithm may not often guarantee numerical
convergence while the vector field method does. So,
vector field method has been considered as a reliable

tool for continuous-time neural network analysis.
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