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ABSTRACT

We first obtain the departure process of a D-BMAP/Geof/l/K queue. The departure process of this queue is
characterized by a k— state MMBP in order to capture both the burstiness and correlation of the departure

process. The tractable fitting model for characterizing the departure process of the queue by a k— state MMBP
is proposed and its accuracy was examined through extensive validation tests. The fitting model is then used in a
simple decomposition algorithm to analyze a tandem configuration of discrete-time finite capacity queues with cell

loss

analyzed. For a review of relevant results sce
Pujolle and Perros’!, However, little has been
done for the analysis of networks of discrete-time

finite capacity quenes. A network of discrete-time

I. Introduction

In recent years there has been a lot of interest

in the development of high-speed communication
networks. The most promising design for
high-speed networks is the Asynchronous Transfer
Mode(ATM). The need for performance evaluation
of ATM networks has given rise to a widespread
interest for the analysis of discrete-time queueing
systems, Discrete-time single server queues with
or without finite capacity have been extensively

finite capacity. queues can be used to model the
queueing within an ATM switch, or the queueing
within a network of ATM switches. The external
arrival process to the network is assumed to be
bursty and corrclated. Markov Modulated Poisson
ProcessesMMPP) 2%, and Markov Modulated
Bemoulli Processes(MMBP) are used to model a
bursty arrival stream since they capture the
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randomly varying arrival rate. The MMPP and
MMBP capture the notion of burstiness and
correlation of successive interarrival times, In this
paper, we assume that the arrival process to the
queue is a Discrete-time Batch Markovian Arrival
Process (D-BMAP) which belongs to a class of
versatile point processes discussed in Y. A
D-BMAP is the proposed model for a single
variable bit rate source. Also, it can be used to
model the superposition of several such sources
© The MMBP or IBP is a special case of the
D-BMAP, with all arrival having a batch of size
1.

In this paper, we consider discrete-time finite
capacity queues with cell loss. The service time
at the queue is assumed to be geometrically
distributed. The choice of the geometric
distribution was motivated by ATM networks”. In
general, a service time represents a transmission
time. In an ATM networks the size of a cell is
constant, and therefore, the transmission time is
constant as well. However, in some ATM switch
architectures a cell may be re-transmitted several
times due to possible collisions with other cells.
In this case, the total transmission time is
typically modeled by a geometric distribution.

In general, discrete-time queueing networks as
they arise in ATM do not lend themselves to an
exact analysis. They can be analyzed, however,
approximately using the notion of decomposition.
That is, the network is decomposed into
individual queues, and each queue is then
analyzed separately. The most important aspect of
such a decomposition is the characterization of
the arrival process to an intermediate queue. In
continuous-time queueing networks, typically such
as the departure process is characterized
approximately by a phased-type distribution, or by
a general distribution defined by the mean and
squared coefficient of variation, Although there
has been some work regarding the departure

B3 most of this wotk bears some

process
limitations which serious undermine their appli-
cability on network-wide traffic analysis. Most of

these studies only provide results on the stationary
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distribution of the interdeparture time. Although
this is a very important piece of information, it is
by no means sufficient for characterizing the
non-renewal departure process: the lengths of
successive interdeparture times are highly corre-
lated and such correlation will have significant
impact on downstream queuecing performance. As
a result, details about the dynamic bebaviour of
the departing stream, e. g., burstiness and correla-
tion, have to be swdied. In this paper, the
departure process of the D-BMAP/Geo/1/K queue
has been studied.

Blondia and Casals'® showed that the output
process of a D-BMAP/G/1/K queve is a
D-BMAP. Park and Perros'*" derived the
generating function of the interdeparture time
distribution and correlation of the departure
process of an MMBP/Geo/1/K queue. They also
obtained an approximation model for characteriz-
ing the departure process by an MMBP in order
to captute the cormelation and burstiness of the
departure process of the queue.

This paper is organized as follows. In section
N+ we give a brief description of the D-BMAP.
The generating function of the interdeparture time
of a D-BMAP/Geo/1/K queue and the correlation
coefficients for the departure process are obtained
in section [I. In section IV, we present a tract-
able model for characterizing approximately the
departure process as a k-MMBP and we examine
its accuracy.

I. The Discrete-time Batch Markov
Arrival Process

2.1 The Generating Function of the
Interarrival Time of the D-BMAP
A D-BMAP can be represented by a
2-dimensional  discrete-time  Markov  process
{(Kk), NK): k=0} on  the state  space
{(i,/) : 1<i=m, j=0)}, where { indicates the
state of the arrival process, and ; indicates the
number of arrivals. The transition matrix T of the
counting process has the following structure:
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Py P, P; Py
T = P, P, P,
P, P, -

where P,, k>0, are owmxm matrices. Let
P=3 P, be the transition mamix of the

underlying Markov process. If X% represents a
phase variable and M#% a counting variable then
the above Markov process defines a batch arrival
process where transitions from a state (,7) to
state (1, 7+ n), corresponding to batch arrivals of
size =,

Consider a discrete-time Matkov chain with
transition probability matrix P. Assume the
underlying Markov process is in some state
i, 1<i<m at time k. At the next time
instant %+1, the process may transit to another
state or it may stay in the same state, and a
batch arrival may or may not occur. Let
Pnins w20, 1 =4,7=< m, be the probability
that there is a transition to state ; from state ;
with a batch atrival of size #» . Then, with
probability Pipm=1, 1 =4j=s m, a
transition to state j will take place without an
arrival, and with probability
D 21, 1 <4j= m, there will be a
transition to state j with a batch arrival of size
n . We have

Z\P(o.i.n + gl ;gﬁ(""’-’) = 1.

Using this notation, it is clear now that
matrices Po=[2(, ;] mem a0 Pr=[5: 5] mxms
govern transitions that correspond to no arrival
and arrival of batch of size k£ where k=0, res-
pectively. A D-MAP is a special case of the D-
BMAP, with all arrivals having a batch of size 1,

Through this paper, we consider an arrival
process to the queue which is a D-BMAP
characterized by the transition probability matrix
P of the Markov process, A, mxm diagonal
mattix with elements a,,---,a, and B, defined by

TR a 0

pml pm

by by }
, A= -.

. a,ndB=!
0 Am

whete p,, 1 < 4,/ <m is the transition

probability that the process changes from state

to state ;| )f“p,-,.=1, 2, is the probability that a
=

batch arrival occurs when the D-BMAP shifis to
state ¢, and b, is the probability that the
arriving batch size is equal o

k k>1 3b.=1. The D-BMAP satisfies

following equations: For 1<i,j<m, n>1

Poip = p5{l—a)

Pnin = Db

o0
pr“- i .

This process can be also referred to as a
Markov Modulated Batch Bernoulli Process
(MMBBP). In general, a D-BMAP becomes an
MMBEP if the following relation are satisfied: For
1=dij<m,

by

bﬂ = 1
Py = PoistPain ey
pi(1—a) = py.ip

bie; = Da.ipn )

A D-BMAP has been proposed as a model
from single wvariable bit rate source and its
superposition 1 Therefore, we assume that the
batch size of a batch is bounded. Let N be the
maximum batch size. Let T be the interarrival
time between two successive batch arrivals, Also

let 7=[n, 7,7 be the stationary probability
vector satisfying 7=7P , where , 1<i=m ,
is the probability that the process is in state ;.
The generating function of batch interarrival time
T(z) is

T(2) = P, T(2) = 2 p.(I-2zM)'P1

where _ﬁa:f—A , T(@=2I-2zM)"'P7,
i
M=P(/-4) ad A =[ay,a,]%,

The average batch arrival rate p,, the average
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cell arrival rate p., and the squared coefficient
of variation of the interarrival time between two
successive arrival of batch, ¢} are as follows:

=71, b= RiFAT,, md

T(2) 1
G =roqmEte

where B;=[by; . bm] " and T7(1)= FA—“;Z,,Z
z=1

2.2 The Autocorrelation of the
D-BMAP

In this section, we obtain the autocorrelation of
the interarrival time of Dbatches, and the
autocorrelation of the number of arrivals per slot.
Let ¢, be the time interval between the (x—1)st
and #xth arrival of a batch. Also, let
), 1<i,j=m , be the time interval to the
moment that the D-BMAP is in state j and nth
arrival occurs given that the D-BMAP is in state
i, and £}, 1<i<m, be the time interval to the
nth arrival given that the D-BMAP is in state
i . Define

An(2) A2
A(z) = [ g } and

An(® A2

. Al(z)
A(z) = [ H }
A,(2)

where A;(z) and Ag2) are z-transforms of
¢ty and ¢}, tespectively. From the definition of
Afz) and  Afz) for 1<ij<m, we have
following equations:

A(2) = zPA+zMA(2) and A(2) = T(2) .

Therefore, we can obtain

A(2) = (1-zM)"'PA and

K = «(1-zM)'PA. 3)
Using equation (3), we have

Ga(zll 32) =

378

Elz)"z) = D, A(z) T Alzy)
=, z(I—z;M)"'PA Tk_lzg(l—z-gM)_lP_/‘

where T=[I-M] 'PA
By differentiating equation (4) with respect to
z, and z,, we have

3°G(212))

E{tutu+k}= 321622

Foom | g, D
= p(1-MlPAT (1- M) P,

The autocorrelation coefficient of the interarrival
time of batches of a D-BMAP for lag k, ¢,(%),

is given by

s = Bllalerd E8) ®

Let X, be the random variable representing the
number of arrivals at  ath  slot, where
X,=0,1,,N . Then, we have

EX,}) =

(XY = f;

ﬁ_l}ﬂAB PAb,,

1

E{Xan+k}

Varl X}

E{X%) - EXX,}

where B; is a diagonal matrix with elements
briv o b

Of interest is the autocorrelation coefficient of
the number of arrival per slot of a D-BMAP for
lag %, o[k, given by

o) = B Zerd FUX] (o)

H. The Departure Process of a
D-BMAP/Geo/1/K Queue

We consider a D-BMAP/Geo/1/K queue, where
the service time is defined over a slotted time
axis. A service starts at the beginning of a

www.dbpia.co.kr
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service slot, and service completion is assumed to
take place just before the end of the service slot.
The arrival process is also defined over a slotted
time axis with the same slot size, and it is
assumed to be a D-BMAP. The parameters of the
arrival process are: pf, of, and 5%, where
p2is the (4, Dth eclement of8 the transition
probability mattix P, ¢ is the (i, )th element of
the diagonal matrix A, and 4% is the (4, Hth
element of the matrix B . We define the state of
the queve by the variable (s,#) . Variables
represents the state of the arrival process at the
end of a slot and it takes the values: i,
1<i=<m , if the arrival process is in the state /.
Variable » indicates the number of cells in the
system at the end of a slot. We have
n=0,1,,K, where K is the capacity of -the
system including the cell in service. Let P, be
the transition probability matrix of the queue.
Define P,, and P, as follows:

0 0 0 0
M LB, LB, LB,

M LB, LB,
M LB,
P “‘(1‘_0') s .

LB, LB, LB, 0

M LB, LB 0

M L 0

P 0

and

M LB, LB, LB,
Mg LBy LByo
Mg LBy

Mo
8 Pu= .
M¢ LB,oc LBy LBo
Mo LByo LBy

Mo Lo

Po

where B;= -2;1 B, and L=PA.

We can see that the transition probability
matrix, P, can be decomposed into two matrices,
P, and P,,, where P,,, P, is a mattx
that contains transitions with a  departure
respectively  without a  departure.  Therefore,
P,= P+ P.. . We compute the generating
function of the probability distribution of the
interdeparture time, and then we obtain the

autocorrelation of the interdeparture time and the
autocorrelation of the number departure per slot.

3.1 The Generating Function of the
Interdeparture Time Distribution

Let ¢, be the time interval between the (z—1)
st and the xth departure. Also, let 7,
1={,j<I where L=m(K+1), be the time
interval to the moment that the state of the queue
is jand the nth departure occurs given the
queue is in state i, and ¢, 1<i<l , be the
time interval to the =th departure given that the
queue is in state ;. Define

Dy \(2) ) Dy, 1(2)

. and
Dy y(2) Dy ()

D(z) = [

Dll(z)

D(2) = :
DL(Z)

whete D, (2) and D{z) are the z-transforms of
t; and ¢}, respectively, Also, let P*(s, n) be the
probability that immediately after a departure the
system is in state (s,») . From the definition of
D; {z) and Dfz) , we have following equations:

D(z) = 2(1=2P ) P and

D(a) = A1—2P ) 'Pus e

where _é=[1,1,---,1]T. Then, the generating
function of the interdeparture time distribution
D(z) can be obtained from as follows:

Do) = B'" D) = 2B (1-2Pu) ! Pu'e
where
B =[P*(1,0),,P*(m,0),P*(1,1),

—
XPM

PY2, 1, P (m, K] = 33
X Ag

From the generating function, we can obtain
the moments of the time between successive
departures, the squared coefficient of variation of
the interdeparture time (%, and throughput o, .
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3.2 The Autocorrelation of the
Departure Process
In this section, we obtain the autocortelation of
the interdeparture time, and the autocorrelation of
the number of departure per slot. In order to
obtain the autocorrelation of the interdeparture
time, we have

Ghzz) = Elzrzi™) = P’ D(z) R* D(zy)

-13.+21(I_?-1 | P I
R '2(1~2 Pudd ' P e D
where R=(I’— ch,d)_x Pwd-

By differentiating equation (7) with respect to
z; and 2z, and substituting z;=1 and z,=1 into

equation (7), we have
Elttassd = P (I— Pu) ' Pu
R*(I- Pop) 2P e

The  autocotrelation  coefficient of  the
interdeparture time of an D-BMAP/Geo/1/K queue
for lagk, ¢k, can now we obtained using
expression (5)

Let X, be the random vatiable representing the

number of departures in the nth slot, where
X,=0,1. We have

E(X,}=E{X%}=p, and
E{X,Xnss}= X PPy,

where 4,=[0,,0,1—d,~.1-cl7 and X is
the steady-state probability vector satisfying
%P, =% . The autocorrelation coefficient of the

number departures of the queue for lag
k, o k), can now be obtained from (6).

Let us consider the autocorrelation of the
interdeparture time of the queuve. One of the most
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interesting facts that we have obsetved is that the
autocorrelation coefficients of the interdeparture
time (correlogram) may fluctuate quite a lot!"®.

As an example, consider the case where

0.98 0.01 0.01 0.9 0.0 0.0
P= l0.0l 0.98 0.01] and A= {0 0 0.5 0.0] .
0.01 0.01 0.98 0.0 0.0 0.1
The correlogram for
1.0 0.0 0.0 0.8 0.1 0.1
B,={1.00.0 0.0 and Bp= [0.2 0.6 0.2
1.0 0.0 0.0 0.1 0.10.8

0.4

031

02

01 r

Fig. 1 Interdeparture correlation, .4

is shown in Figure 1. We note that for B, we
have a smooth curve, whereas for Bp, we have
an oscillating curve. This oscillation seems to be
due to the variability of the number of arrivals
per slot within the same state of the arrival
process, Let us consider the example given in
Figure 1 assuming that the batch size distributions
are given by Bjy. We note that when the arrival
process is in state 3, the rate of armivals g, is
very low. Also, bg is quite large in relation to
by and by . When the arrival process is in state
3, there may be long interarrival periods and the
queue may empty out between successive batch
arrivals. In this case, the pattem of the
interdeparture times consists of one long intetval
followed by small intervals. This pattern causes
the autocorrelation of the interdeparture time to
fluctuate.

www.dbpia.co.kr
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IV. Characterization of the
Departure Process

In this scction, we obtain an approximation
model for characterizing the departure process by
a k-MMBP. This model captures the correlation
and burstiness of the departure process of the
queue. It can be shown that the output process of
a D-BMAP/G/1/K queve is a D-MAP® and the

MMBP is a special case of the D-BMAP. Note
that the fitted x-MMBP is characterized by the
transition probability matrix P, of the Markov

process and A, given by

P 414 off 0
Pest= and A=
oy e 0 o

where PP, 1=i,j<k, is the transition
probability that the fitted MMBP changes from

state i to state ﬁ‘\p:;-"=1 for 1=<i<k, and
P

™, 1=i<k, is the probability that a slot
contains a cell during the time that the MMBP is
in state . E—MMBP is
characterized by 42 parameters. It is practically
impossible to obtain these parameters using the
method of moments; particularly when & is large.
Other fitting techniques, such as minimum
distance estimation and least squared estimation,
can be used, but they are time consuming.
Unlike the case of the m—MMBP/Geo/l/K
queue, we can see that the autocomelation of
coefficients of the interdeparture time of the
queue can fluctuate as shown in Figure 1. Due to
-the characteristic of the departure process, the
model proposed in the previous works"*™ is not
suitable for characterizing the departure process of
a D-BMAP/Geo/1/K queue. The method estimates
poorly the autocorrelation coefficients and the
interdeparture time distribution. In this section, we
present a simple method for fitting a %-—-MMBP
to the departure process of a D-BMAP/Geo/1/K

Therefore, a

queue. We note that we do not address the
problem of how many stages the fitted MMBP
should consist of.

4.1 Model

The departure process of a queue is governed
by the states of the queue. Therefore, we can
obtain valuable information regarding the departure
process from the states of the queue. By letting
each state (s,n) be a separate state in the
departure process, we can easily characterize the
departure process as a D-MAP with Py,= P,
and P,= P,;. Note that this D-MAP does not
satisfy equations (1) and (2), and therefore, it is
not an MMBP. However, we can have an exact
MMBP characterization of the departure process
of the m-MMBP/Geo/1/K queue only when os=0.
In order to characterize the departure process by
an MMBP, we have to obtain »F and of for
1<i,j<k , so that they satisfy equations (1) and
(2). Given a state, then in the next slot a
transition will occur with a departure or without a
departure, Let (s, ), and (s, %), be the two
states of the queue representing that the system
shifted to (s,n) without a departure and with a
departure, respectively. Then, we can separate ail
states (s, z) into (s, 7). and  (5,7),,. Note
that P(s, n) = (5, 1) yoat+ P(5, %) yua and
As,K)=0 for all 5.
states  (5,7) e and (s,n),y for l=s=m,
0<n<K as a scparate state of the fitted MMBP.
The total number of states of the fitted MMBP is
k=2m(K+1) . Then, the departure process of the
queue can be exactly characterized by the %-
MMBP with matrices

We can now consider

Po= P,+ P, and A,,,=[ 8 ‘I’]
where

P0=[ Poa 0 , P1=[ 0 P ,
Pux 0 0 Puw

and I is a m(K+1)xm(K+1) identity matrix.
We can see that the number of states of the
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fited MMBP is very large when sm and K is
large. That is, the computational complexity is
directly proportional to the buffer capacity and the
number of states of the Markov chain of the
arrival process. We can significantly reduce the
number of states by simply aggregating the states
of the fited MMBP. By only matching the
interdeparture time distribution, the number of
states of the fited MMBP can be reduced to 2.
In this case, however, we will ignore the
autocorrelation which has a significant impact on
the accuracy of the fited MMBP. There is a
trade-off between the number of states of the
fitted MMBP and the accuracy of the estimated
autocorrelation of the interdeparture time. In
general, we can se¢ that there is a large variation
in the number of customers in the queue given
that the arrival process is in a state which has a
large variation in the number of arrivals. This
variation can cause the autocorrelation coefficients
of the interdeparture time to fluctuate. Due to this
fact, a different grouping of the states than the
one used in the previous works™'” has to be
considered which gives a tractable number of
states of the fited MMBP and a satisfactory
accuracy. It is, however, difficult to determine
such a grouping. In this section, we introduce an
intuitive  grouping method for a +KMMBEP
characterization of the departure process.

Let us consider a state of the queue (s, n).
Note that the state (s,7) can be seen as the
aggregate state of (s,7),,, and (s,7),.. Let
N, be the number of customers in the queue
given that the arrival process is in state ;. Also,
let C% be the squared coefficient of variation of
N Then, (%, is defined by

. — Var(l\f’é}
¥ E* {Ng}

The state classification is done based on the
following two arguments. First, we consider state
i which has a large variation in N% (for instance,
state 3 in the example given in Figure 1).
Intuitively speaking, during the time that the

382

process is in this state, N,=0 for a long period.
Then, Nj can be suddenly changed to B; with a
batch arrival.  Subsequently, N, is reduced
gradually due to successive departures, and it
finally becomes Q. That is, during state i, the
pattern of the successive interdeparture time is as
follows: one long interval followed by several
consecutive short intervals, This pattern can create
fluctuation in the autocorrelation coefficients of
the interdeparture time. Also, we can argue that
P(i,n), n=0,-,B;is significantly larger than
i, m) for Bi<n<K . In view of this, we group
all states (7,») which have insignificant values of
P(i,n) into a single state of the fited MMBP,
and each state (7, ») which has a significant
value of PF(i,#) is considered as a separate state
of the fitted MMBP. The second argument that
we can use for the state classification is the
following: Let us now consider state j which has
a small variation in N, (for instance, state 2 in
Figure 1). This statc has a small effect on the
fluctuation of the correlation coefficients of the
interdeparture time. Note that the departure rate
depends on the states of the queue. When the
gueue is not empty, the departure rate in a slot
depends only on the parameter of the service time
distribution o . When the queue is empty, the
departure rate in a slot depends on the state of
the arrival process. :

Using the above two arguments we can classify
the states as follows, For state ;i of the arrival
process which has C% = ¢, each state (7, #),
n=0,-,B;+1, is considered as a separate state
of the fitted MMBP. For a state j of the arrival
process which has C%, < ¢, state (j,0) is also
considered as a separate state of the fitted
MMBP. Note that states ; and ; are not the states
which have the highest peak arrival rate. In order
to simplify the presentation below, state 1 of the
arrival process is assumed to be the state which
has the  highest peak arrival rate, ie.
o= max (af). All temaining states are grouped
into a state of the fited MMBP. We define S,,
1=i<kto be the set of all states of the queue
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which belong to state iof the ,k—MMBP
departure  process. We have the following
grouping of the states:

S; = {(s,00:s%1, Ch<gq} for 1<i<h’

8 = {(s,m):s*l, Cip=q, and 0=n<B+1)
for k*<i<k

S; = {all remaining state}

where £* is the total number of states which have
C%, < ¢ and B, is the maximum size of a
batch during state s . Note that 4 is empirically
set to 1.

Now, we can obtain P, and A,, based on
the above grouping of the states. The parameters
of the fitted MMBP, »& and o, 1<ij<m,
can be calculated as follows:

p§ =
(s.ge S.P(S' n)
2t = (1- a)[ (slng"s‘P(s, n)]
(s.%:es.-P(s’ 11)

where  #{(s,m)—(s, »)] is the transition
probability the process changes from a state (s, )
to state (s, 7).

This method always gives a feasible set of
parameters which satisfy the basic conditions,
0<pf<l and (Q=a®<] for 1<i,j<k.

4.2 Validation

Extensive tests were carried out in order to
establish the accuracy of the estimated MMBP. In
particular, we considered a D-BMAP/Geo/1/K
queue with K=8, 4=0.1, and m=24,6. The
parameters of the arrival process were varied so
that the departure process corresponded to
different values for p, and ¢% and different
patterns  of fluctuation in the autocorrelation
coefficients of the interdeparture time. 24 different
test cases were thus created.

Table 1. Validation result

Ex jm [k 22 &y, &n) g4(n) eln) | n

™ 12 15 14.603e-1| 4.409e+1/4.450e+]1 | 4.897e+] | 438920+]1 | 1.956e-3 | 2736
2 (2 (5 [4531e-1| 4,086e+2/4.096e+2 22252 | 1.306e+0 | 2.045¢-4 | 5000
I (2 |2 |8940e-1| 1.103e-1/1.102e-1 211502 | 1.805e-2 | 6.008c-5| 40

4 (2 (2 |5851e-1] 3.182e+0/3267c+0 | 66221 | 9.78%e-1 | [324e-2§ 262
5% |2 |5 [6363c-1| 1.039e+1/1.04%+1 | 4.134e+2 | 1.382e+2 | 2.537e-2| 3015
6 12 15 11.200e-1] 1.099+2/1.008e+2 1981e-2 | 2.437e-1 | 2.605e-1 [ 5000
T 12 |5 |4.838e-1| 3.732e+0/3.796e+0 3.077e-1 1.113e-1 | 6.197e-2 | 1621
8 12 |5 [1.833e-1| 1.133e+0/1.185e+0 1827¢-2 | 3.097e-2 | 443602 | 215
9% 14 [0 165771 7.797e+1/7.798a+1 | B5BGe+] | 4.453e+2 | 3.352e-4 | 5000
10 |4 (14 [7.350e-1| 5.533e+1/5.530e+] 1.593¢-1 | 3.163e+1 | 2.406e-4 | 5000
x4 |9 |8.320e-1{ 3.517c-1/3.654e-1 L3680+ | 262540 [ 73903 &

12 |4 |4 |8995¢-1| 1.0082-1/1.009e-1 162683 | 1242e-3 | 8.425%-5| 37

13%]4 |19 ] 1.388e-1| 9.073e+1/9.075¢+1 | 3.556e+1 | 1.838e+2 | 3.2100-2 | 5000
14 |4 119 | 3.864¢-1 | 3.53Be+2/3.557c+2 | 7.491e-1 | 1.810e+2 | 3.02de-2 | 5000
15+|4 (9 1.591e-1 | 7.906e+0/7.976e+0 | 3.121e+1 | 2.127c+2 | 2.344e-2 | 1043
16 (4 |19 23181 | 2.962e+0/2.7440+0 | 4.819¢-2 | 1.525e-1 | 440202 | 346
17+|6 |20 | 6.129¢-1| 6.575c+1/6.579e+1 | 3293c+0 | 2.287e-1 | 6.902¢-4 | 5000
18 (6 {13 [640Te-1( 6.148¢+1/6.160e+] 5.503e-1 | 8.638c+1 | 4.8650-4 | 4302
19%|6 16 |R2.997e-1| 1.00d4a-1/1.005e-1 133083 | 1491e-3 |3.625-5] 26

20 16 |41 |8.70dc-1| 6.157e+1/6.159c+1 | 4.157e+] | 2.793e+1 | 3.365-3 | 5000
%6 (27 |2.531e-1] L133e+1/1.13%+1 | 2.775e+1 | 1.216e+2 | 7.121e2 | 1085
22 |6 |41 [2441e-1| 2.064e+2/2.063e+2 6.807e-2 | 3.670e+0 | 1.746c-1 | 5000
23% (6 {27 [2.327e-1| 4.741e+0jd.824¢+0 | 7.337e-1 | 3.110e+0 | 4.503s-2 | 509
24 |6 (4] |3.130e-1| 3.7740+0/3.667c+0 | 4.803e-2 | 5.134¢-2 | 239902 | 343

* ¢ (1) oscillates

The validation results are given in Table 1.
One of the measure of accuracy employed was
ep(n) given by

exn) = 3 |P(D=1)~PoiD= i)l

where P (D=7} is the estimated probability
that the interdeparture time is equal to ; slot(s)
and » is the number of distribution points that

were compared. x was selected so that

gP{DL- i} = 1, The value for » for each test

case is also reported in table 1. Also, we give
the number of states of the fitted &-MMBP. For
each case, we also give errors computed using
the expressions

eim= 104D~ duldl and

OEPNIYORIWET
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where ¢.(7) is the estimated autocorrelation
coefficient of the interdeparture time for lag ¢
and Pe?) i the estimated autocorrelation
coefficient of the number of departures for lag
i. We also give the values for the squared
coefficient of variation of the interdeparture time
of the fitted MMBP, 2, .

- The estimated autocorrelation coefficients of the
interdeparture time using the model can follow
only the pattern of fluctuation but not each value
of the exact ¢[7). Note that we can have large
ep(n) when C% =1 as in example 6 and 22
of Table 1. We can have a large number of
states of the fited MMBP when the number of
states of the arrival process m and the maximum
size of a batch B, are large.

Table 2. The characteristics of the arrival processes

Example | m o. g #1) $1)

1 4 19.055¢-1| 3.61-e+1 | 2.842¢-1 | 2.586e-1

2 4| 8.139¢-1 | 9.662e+1 | 2.922e-2 | 7.011e-1
3 2 [ 6.750e-1 | 3.693e+0 | 3.883e-1 | 4.217e-1
Table 3. 4, ¢, and cell loss probability for node 2

Example | fitting model | simulation/exact analysis

fa 6.4676e-1 6.4320e-112,8864¢-3

1 & 4.4570e+1 4.4349¢+1 18.6560e-1

cell lossfi 7.1830¢-3 8.7225¢-3-+1.1850e-4

04 3.9804e-1 3.9922¢-1+1.7183e-3

2 (o 8.9489¢+1 8.8868¢+141.0232e+0

cell loss| 8.2549e-3 8.2808e-3+1.1034e-4

04 5.3299¢-1 | 5.3280¢-1 (exact analysis)

3 Lo} 3.5382e+0 (3.4283e+0 (exact analysis)

cell loss| 2.0537¢-2 |2.0887e-2 (exact analysis)

[-31 a2

Ko K:
p-smapr —+{ | [ ]| .l ] lll

Loss Loas

Fig. 2 A two-node tandem queueing network
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Fig. 3 QLD of node 2 and absolute etror (Example 1)
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Fig. 4 PD=i and @), for 1<i<10, of node 2
(Example 1)
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Fig. 5 QLD of node 2 and absolute error (Example 2)

We further validate the fitting model by using
it to analyze approximately a two-node tandem
configuration of discrete-time finite capacity
queues. Let us consider an open queueing
network consisting of two nodes linked in tandem
as shown in Figure 2. 3 different examples were
considered, the first two corresponding to a case
of a 4-state D-BMAP as input traffic to the first
node and the other to a case of a 2-state
D-BMAP. Note that the autocorrelation
coefficients of the interdeparture time of the
output traffic from the first node fluctuate more

www.dbpia.co.kr
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in example 1 than in example 2. The output
traffic from the first node in examples 1 and 2 is
bursty. The characteristics of the arrival process
to the first node for the three examples are given
in Table 2. The values of K;and g, for
examples 1 and 2 are: K,=8 and g4,=0.1 for
i=1,2. The values of K; and g; for example 3
6,=0.1 for i=1,2. The
approximation results for examples 1 and 2 were
compared against simulation data in Figures 3 to
6 and in Table 3. The approximation results for
example 3 were compared against exact values in
Figures 7 to 8 and in Table 3. The exact values
were obtained by fitting an exact MMBP to the
departure process of node 1. This MMBP was
obtained using state classification of (s, #),.0 and

are; K;=4 and

(s,7) ug. In particular, figures 3 to 4 are for
example 1, figures 5 to 6 for example 2, and
figures 7 to 8 for example 3. Note that for the
exact analysis the total number of states of fitted
MMBP is 72 for examples 1 and 2. The exact
analysis is time-consuming and computationally
complex procedure. Therefore, the approximation
results for examples 1 and 2 were compared
against simulation results.

In Figure 3 we give the queve length
distribution and corresponding absolute ecrrors for
node 2. In Figure 4 we give the interdeparture
time distribution P D=1} and the
autocorrelation coefficients of the interdeparture
time ¢, (7, i=1,-,10, for node 2. We give the
throughput, the squared coefficient of variation of
the interdeparture time, and cell loss probability
for node 2 in Table 3. We mnote that the
confidence intervals were not plotted in certain
graphs as they were extremely small. The
approximate results for examples 2 and 3, given
in Figures 5 to 6 and in Figures 7 to 8,
respectively, are presented in the same way as in
example 1. We can see that even though (9
of the fited MMBP follows only the pattern
rather than the values of ¢«#), as shown in
Figure 8, the model gives a satisfactory accuracy
of performance analysis on the downstream node.

Gueustength Distrioution Absuiute Error
1]

o008
—— Simulation
===« Fiting madel

2 4

2 4

B [ 1
¥ of cells * of calln

Fig. 6 PD=i and (), for 1<i<10, of node 2
(Example 2)

Qusualength Cistdoution Absohite Krror

1 [ } 4 ' ? [l .
* ot aels ® of ool

Fig. 7 QLD of node 2 and absolute error (Example
3)

Autagorralation Coatliolmnts nt
hiterdeparturs Time

Interdeparture Time Cistrinution

A

Fig. 8 Pp=# and #L), for ,1=<i<i0 of node 2
(Example 3)

V. Conclusion

In this paper, we obtained the generating
function of the interdeparture time distribution and
the autocorrelation of the departure process of a
D-BMAP/Geo/1/K queue. The departure process of
this queue was characterized approximately by an
MMBP in order to capture both the burstiness
and correlation of the departure process. The
tractable fitting model for characterizing the
departure process of the queue by a k—MMBP
is proposed and its accuracy was examined
through extensive validation tests.
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