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ABSTRACT

Significance testing is one of the most widely used techniques in various applications of statistical analysis.

We apply significance testing to the partially supervised classification problem in which one is interested in

identifying only a particular class of interest, based on the class definition through training samples of that class.

One important element in applying significance testing to classification is the significance level, which should be

provided by the data analyst in such a way that omission or type I error is limited at a pre-specified level, This

paper addresses the problem of unsupervised estimation of an optimal significance level using the class-averaged

and generalized total classification error criteria, and applies its result to partially supervised classification.

I. M2

Successful classification of a given data set requires
proper design of classifiers to be employed. To be
maximally effective, the design of a classifier requires
prior information which is usually given in the form of
training samples. The number of training samples is
dependent on the number of features and the mumber
of classes’™., In practical applications of pattern class-
ification techniques, a frequently observed characteristic
is the heavy, often nearly impossible requirement on
representative  prior  statistical  characteristics of all
classes in a given data set.

This paper deals with designing a classifier that can
identify a particular class of samples with statistical
information pertaining only to that class of interest.
This kind of problem is especially important where
defining all the classes and gathering corresponding
statistical information is impossible or very expensive
in terms of time and manpower. We call this a “par-
tially supervised classifier™” in the sense that the prior

information is available only for the class of interest,
thus partially supervised. Classifiers such as the
parallelepiped classifier” or a scheme based upon a
known absorption feature for a specific material identify
samples on an absolute basis, that is, without relative
comparison to other altematives. In such cases, class
definition through training samples is required only for
the particular class of interest. This kind of problem is
also known as the single hypothesis problem™ or one-
class classifier™.

Significance testing is a widely used techmique in
various applications of statistical analysis®. A partial
list of exampies includes target detection, object detect-
ion out of various bec] M, texture detection,
cloud detection, and fault or anomaly detection in
diagnostic monitoring™. In this paper, we apply signi-
ficance testing to the partially supervised classification
problem,

One of the important elements in significance testing
is the significance level which must be provided by the
data analyst usually in such a way that the omission
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(ie., type ) emor is kept within a pre-specified level®™.
From an application point of view, it will be useful if
one can use other criteria, such as the Bayes minimum
emmor criterion, or the ones used in the minimax, or
Neyman-Pearson testing'® to determine a suitable
significance level. Unfortunately, lack of prior statistical
information other than that of the particular class of
interest prevents evaluating the commission (or, type II)
emor, and thus, forbids directly applying conventional
procedures used in hypothesis testing.

Motivated by the notion that one can predict the
commission error using the mixture density estimate of
the selected test statistic, this paper presents a method
which estimates the optimal significance level using the
mixture density of the selected test statistic estimated
from the given (unlabeled) data set. Note that the test
statistic is one-dimensional and what needs to be
estimated is the mixture demsity. As optimality condi-
tions, one can use Bayes total classification error, mini-
mum class-averaged classification error, or the gener-
alized total classification error criteria. Its result is used

in partially supervised classification.

I. Significance Testing Applied To
Partially Supervised Classification

Suppose there is a data set, X = {x, — , xn}
with N samples. Fach data sample, x, is a ¢
dimensional feature vector (q =z 1). We assume that one
is interested in identifying only a single class (denoted
by Cum), that is, discriminating between it and the
others class (denoted by Coters). The others class might
consist of several subclasses none of which are of
one’s interest, Let £(x|Cu) and fr(xICues) be the
probability density functions of classes G and Cotes,
and let comesponding prior probabilities be indicated
respectively by 7., and 7, Prior statistical know-
ledge is assumed to be available only for the class of
interest, thus only f(X|Cn) is known. The mixture
probahility demsity, denoted by fi(x), is written as,
0= Tfx®C) +  Zomers fx(X|Coters) where 0 <
Rinte Mothers < L i + Tomers = 1. Even though the
derivations henceforth do not require any specific
family of probability demsity functions for Cuw, for

simplicity’s sake, multivariate nommality is assmmed for
Ciw. Generalization to other probability density  functions
is stmightforward. Forthermore, without loss of
generality, Cye is assumed to have zero mean, denoted
by O, and an identity covariance matrix, denoted by
Iy, This standard rmultivariate nommal distribution is
denoted by MVNIO, Tiud.

In the partially supervised classification using
significance testing, a single hypothesis Hy : x < G,
is tested against all other alternatives to identify
samples belonging to the class of interest. The degree
of support for the hypothesis H is measured with fest
statistic, T(x) which is a function of featare vector x,
x & X Under the MVN[Q,, Ipgl assumption of
£(xC), we Will use the test statistic T(x)=x'x. Now,
the significance testing rejects a sample x if T(X)=x'x
> A The threshold A specifies the rejection region in
the feature space, thus controls the omission emor
which is denoted by =),

=K T(x)>A, | H} €£1—a, 0<e<l 0Y)

The value, (1-¢) defines the maximum allowable
omission emor and is called the significance level or
rejection  probability. In this paper, we call the
parameter o the acceptance probability and use it in
the derivations. The threshold associated with g,
denoted by A,, can be obtained by solving,

[ s caddy=a @

where fy(ylCa) is the conditional distribution of y=x'x,
under the hypothesis Hy. (The notation of H; and Ciw
will be used interchangeably). When y=x'x, fy(y|Cu) is
known to be the chi-squared distribution with q degrees
of freedom™. The commission eror, denoted by ¢,, is
generally very difficult to control, since its evaluation
requires unavailable statistical knowledge about all
alternatives. Increasing the acceptance probability o
reduces the omission error at the rate of 1, but, at the
same time, increases the commission error whose rate
of increase is dependent on the closeness of the
distribution of the others class to the class of interest.
To awvoid potentially excessive omission or commission
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errors, the significance level (equivalently, the acce-
plance probability) must be carefully determined by
checking the relative distribution of data samples with
respect to the class of interest.

. OPTIMAL SIGNIFICANCE
TESTING

A. Omission and Commissian Errors
as Functions of Acceptance Pro-
bability e

One can compute the omission emror, &,(2) in terms

of the acceptance probability « by dividing the number
of Ciy samples rejected at an acceptance probability «
with N; where N; is the mumber of samples belonging
to Ci in the data set X and is unknown. Similarly,
the commission error &,(@) is obtained by dividing the
number of accepted Copess satmples by N =N-Ni.

sl(a)=“1y-l—:_7\,gl-:& =1l—a (3.a)
Ma)—a- N,
G e v (3b)

N(a) is the expected number of data sanmples
accepted with the acceptance probability o, written as,

Ma)=N fu Anfy(s)ds, 0<a<l @)

where fy(y) is the mixture probability density function
of vy, y-xTx , y= 0, and A, is the threshold
corresponding to acceptance probability ¢ in eq.(2).
Although the mixture density fy(y) is not available a
priori, note that it can be easily estimated using the y
valwes where y=xTx , X Thus, one can easily
estimate N( o). With respect to a, &,(e) is a strictly
decreasing function with slope” -1 and £.(e) is a
monotonically increasing function, but, the actual rate
of increase of &(a) is dependent on the behavior of
Me). The evaluation of =,(e) generally requires N,
or equivalently, the prior probability 7.

B. Optimality Criteria
The optimal acceptance probability 2 is dependent on
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its optimality criterion. For example, 2 can be selected
solely on the basis of the omission or the commission
error, of, it can be selected based on a criterion which
is basically a weighted sum of the two, In many
situations, a simple average of them,

E\(@)=%(e() +eya)] (52)

serves as a good candidate for assessing optimality.

From a classification point of view, this corresponds to

minimizing the class-averaged classification emor. On

the contrary, the overall classification emor corresponds

to the Bayes total probability error criterion which
imimizes,

Eg((l’)Eifi,,;EI(a’)+7T,,g,e,352(a’) (5.b)

the sum of two emors weighted with the prior
probabilities, The weights in eq.(3.b) can be generalized
by allowing different cost between omission and
commission emrors as,

E3( a’)EA * 771'"151(0) + ”athen‘E?.( CY) (5'0)

Constant A, where A > 0, is the cost on making the
omission emor relative to the cost of making the
commission emror being 1. The criteria in eq.(5.a,b) can
be considered to be special cases of Es( @) since Ei( )
with A=1 becomes Ex o), and setting A=r,4../7u
makes Ei( ) equivalent to Ei( ¢). In this sense, the
criterion in eq.(5.c) is called the “generalized” total
classification emror critetion. In following discussions,
only the criterion in eq.(5.c) will be used since each of
the others can be derived as a special case of this
criterion by setting an appropriate value of A.

The class-averaged classification error criterion is a
very useful indicator of classification performance
especially when there are large differences in prior
probabilities since the overall classification accuracy is
dominated by the perfonmance of the classes having
dominant prior probabilities. The class-averaged
classification ertor in eq.(5.a) is desirable optimality
criterion in applying significance testing to the partially
supervised classification since the mumber of class-
of-interest sarmples is in general much less than that of
the others class.
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C. Estimating Optimum Acceptance
Probability
The optimal acceptance probability o« can be
ohtained by minimizing Es( ¢) with respect to a over
the interval, 0 <@x1 That is, by equating the first
order derivative of Ex( @) in eq.(6.a) to 0, and checking
the sign of the second order derivative in eq.(6.b).

dEy(a) _ dN(a) —
o) _LrdMa) 44 N1-0 6w
d’Ef(0) _ 1 d"N(a) (6)

do? N 4

Note that solving eq.(6.a) requirs, in general,
knowledge of N, or, equivalently, the prior probability
Ty Substituting the first order derivative of N( ) in

eq.(4) with respect t0 @ into eq.(6.2) results in,
NAAAD =1+ AN Ag | Co )

The first order derivative of Es( ), being always
positive in 0 <ex< 1, indicates that Nfy(A,) on the left
side of eq.(7) is always larger than the right side,
(1+A)Nify( 1,|Cu) for all @ in the interval [0,1]. Since
(1+A) > 1, this means that the data samples expected
to be in the infinitesimal region (4,, A,+d3,) are
always more than the expected mumber of Cn samples
in the region; thus, considerable commission error will
resut no matter how restrictive the acceptance
probability becomes. Therefore, the optimum value of a
is expected to be 0. On the other hand, the first order
derivative of FEi( ), being always negative in the
closed interval, indicates, by the same token, that the
data points expected to be in the infinitesimal region
(A, A,+dl,) are always less than the expected
number of Cy samples in the region (which is
weighted by (1+A)), therefore, the possibility of
commission is very low. This will allow acceptance
probability e to increase up to 1. Other than these
two extremes, the minirum point of Ej(e) will be
located where the degree of increase of the weighted
conmmission error starts to surpass the decrease of the
weighted omission emor. The prior probabilities and
relative cost A determine the actual balancing between

omission and commission errors. Due to the closed
interval of @, a minimum of Es( 2) always exists and
so does an optimum o, even if there may be no
solution satisfying eq.(6.a) and the positiveness of
eq.(6.b). Supposc solutions satisfying these two
conditions do exist, and denote a set of -those solutions

as S.

dzEs( a)

S={a| do

0 and »0,0=e<1)

dEy(a) -

da

The elements in $ correspond to the (local) minima
of Es(z). The global minimum can be selected by
comparing the actual values of Es( o) at different o's
in § in the following way : suppose @i, o are
elements in S, then, the difference, Es( @) - Es o)) is
written as,

Exa)—E(a) =3 ®)

where, & =[N a;) —N(a;) —(a;—a,) - (1+A4) - N]
By checking the signs of the A s, the acceptance
probability which achieves the global minimum of BEs
(2) can be selected from the set S. Notice that solving
eq.(7) and evaluating eq.(8) requires N, but, under the
class-averaged classification error criteion of Ei( a), it
can be evaluated even without knowing N; since
substituting A= 7/ 75 =N/N1 - gives  (1+A)Ni=
(14Nz/N)N;=N, independent of N, This property of
the class-averaged classification error critetion is very
useful in actual application of this rethod, since the
muober N; is unknown in most problems, Note that
the class-averaged classification error criterion of Ei( @)
makes very good sense in applying significance testing
to the partially supervised classificaion problem
because the classification performance is not dominated
by the relatively large prior probability of the others
class.

IV. Experiments and Discussion

To test the performance of the proposed method and
application to the partially supervised classification
problem, experiments are carried out with simulated
Gaussian data.
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For the class of interest, 1000 bivariate Gaussian
samples are generated with zero mean and an identity
covariance matrix. For the others class, 2000 bivariate
Gaussian samples are generated with mean [d, 0], d >
0, and an identity covariance matrix. With this set-up,
the exact amount of overlap when the distance between
two class means is d can be calculated as,

a2 )
Overlapd) = 1~ 722—71_ fo exp(— -2L £)ds

The term “overlap” is defined as the volume shared
by the two probebility density functions. By varying d
from 0.1 to 5 in steps of 0.1, data sets with different
degrees of overlap can be sinmlated: d=0.1 simmulates
96.02% of overlap, and d=5 produces only 1.24% of
overlap. To avoid any random error due to the data
generation process and its effect on evaluating the
experimental result, data sets are generated 50 times
with different sced numbers, and their average is used
in comparison. Since the class-of-interest data are
Gaussian with zero mean and identity covariance
matrix, the test statistic y=x'x is used.

At first, various different acceptance probability «’s
from 0.01 to 0.99 in steps of 0.01 are tested to see its
effect on classification accuracy of a partially
supervised supervised classifier using significance
testing. As expected, the omission emor decreases
lincarly with respect to the acceptance probability with
slope = -1, and the slope of the commission emor
increase depends on the degree of ovetlap between the
two distributions. When d = 0.5 (~ 80.26% of overlap),
the commission error increases almost lincarly with
respect t0 a. This is due to the substantial closeness of
the two distributions, When there is effectively no
overlap such as in the case d = 45 (244% of
overlap), the commission error is observed to stay very
low, virtually insensitive to .

To evaluate the accuracy of estimated o values,
(te) optimal acceptance probebilides are manually
determined by changing o from 001 to 0.99 in steps
of 001 under the selected optimality criterion. These
manually determined values are denoted by “scanned,”
and used as references in evaluating the accuracy of
the estimates obtained by the proposed method, The
estimated acceptance probabilities with both the class-
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averaged and the total classification emor criteria are
shown in Fig. 1. When applying the total classification
emor criterion, the true values of prior probabilities are
used.

1

T f v v v T T ’ i
0.0 9.5 1.0 1.8 20 2.5 30 35 490 43 5.0
d, Diintunow Hetween Clmes Moans

Fig. 1 Estimated optimal acceptance probability o versus
d, the distance between two class means, Solid
lines show the manually selected acceptance
probabilities, Various dotted lines show the
estimated optimal acceptance probabilities using
the proposed method with different Parzen window
sizes.

The density estimate required for N( o) is obtained
by employing a Gaussian Kernel-based Parzen density
estimate with the data set, augmented by positive
reflecion "? Even though an appropriate kemel
window size h is computed as 02 based on Y,
several different values are also tested to see its effect
on the estimated acceptance probabilitics, Figure 1
shows that the estimated o values follow very closely
those manually determined true values especially when
the distance d is large. The optimal acceptance
probability based on -the total classification emor
criterion is near O when d is not large enough, since
the total classification emor is an increasing function of
acceptance probability for those small d values. For
example, when d < 1,0, the commission error increases
almost at the same rate as the omission emor decreases
due to the significant overlap between the two class
distributions. Because the prior probability of Ca is
less than that of Coges, the omission error is weighted
less than the commission error under the total
classification emor critetion. This explains why the
acceptance probabilities for d < 1.0 are almost zero
under the total classification error criterion,

Figure 1 also shows some degree of difference
between the estimated and the mamually determined
acceptance probability under the class-averaged class-

www.dbpia.co.kr



EEAE Y QAL 9% A4 Fox PR

ification ettor criterion when d < 1.0; in this region,
the actual curve of class-averaged classification error is
observed neatly flat with o value in the range 045~
0.5; therefore, an exact location of the minimum of the
class-averaged classification ettor is expected to be hard
to pinpoint. It is also sustained by an experimental
observation that there is a relatively large standard
deviation not only in the estimated but also in the
manually selected optimum o valwes, The same
argument can be made for the deviations in the region
10 < d < 20 under the total classification error
criterion.

The result of classification errors is given in Fig2.
In spite of those discrepancies in estimated o values,
there is not much difference in the resulting
class-averaged and total classification errors, Since less
than 1% of the differences are observed with varying
Parzen window sizes under both optimality emor
criteria, Fig.2 shows only the classification results with
h=0.2. Note that the classification based on significance
testing deals with only the one-dimensional values of
the selected test statistic T(x), therefore, the dimen-
sionality reduction of feature vectors to one-dimensional
space causcs information loss in classification @™, To
see its effect, a (fully) supervised maximum likelihood
classifier (denoted as "REL-ML”) and a maximum a
posterior  classifier (denoted as “REL-MAP)?™ are
designed in the original q-<dimensional space with
known class statistics of Cy and Comes, and their
petformances are also drawn in the Fig.2,

" Wit cls-avernged ===res Soumed
3 " sovor cgurion|  |—— Estimaind
= -, o With total classification
‘§ m\ STOr X
\\'\
RELMI, o
2 f:,:‘
® RELMAP [,
LN
"'u..::"n
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d, Distance Betwoen Clans Manns

Fig. 2 Class-averaged and total classification error versus
the distance between the two class means;
Acceptance probabilities are estimated with the
class-averaged and total classification error
criteria. “REL-ML” and “REL-MAP” are respec-
tively results of the fully supervised maximum
likelihood and the maximum a postetior classifier.
Parzen window size h = 0.2.

As seen in Fig2, the estimated optimal acceptance
probabilities result in almost the same performances
with manually determined values under both optimality
conditions. By the way, a maxfmum of about 12%
emor increase due to the dimensionality reduction is
observed. This is what the simplicity of a classifier
based on the significance testing has to pay for.
Density estimation without reflected data™” s
expected to introduce under-estimation of the probability
density fy(y) near y = 0 due to using a symmetric
kemel function with only positive y values, This
under-estimation in fy(y) and subsequently in N( )
near y=0 would cause under-cstimation of commission
emors, therefore, the optimal acceptance probability
estimates are expected to be larger than they should
be. Since the Gaussian kernel function rapidly decreases
as its argument becomes larger, the effect of
under-estimation due to lack of reflection would exist
only in the region near y=0. Experimentally, no
difference is observed under the class-averaged
classification etror crterion; this is because the
optimum a is much larger than O as seen in Fig.2,
However, in the case of the total classification error
criterion, the estimated acceptance probabilities without
data reflection are ohserved to be larger by as much as
02 compared to those with data reflection in the
region of d < 1.5. But, no differences are seen when d
> 1.5, Greater difference is noticed as the window size
h becomes larger. This is because a large window size
has more reflected samples in the summation of the
ketnel function values. The reflection technique in
estimating a probability density function of y=x'x is
observed to be necessary if the acceptance probabilities
m.cxpectedtobemérwo.'[hediscrepanciesm
acceptance probabilities caused by not using data
reflection are observed to result in as much as 5%
difference of the total classification error in the region
d < 15

V. Conclusion

In this paper, the problem of estimating the optimal
acceptance probability (equivalently, significance level)
is addressed in the context of applying significance
testing to partially supervised classification, As the
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optimality criteria, both class-averaged and generalized
total classification emror criteria are considered. It is
shown that if the class of interest does not comsist of
multiple sub-classes, the optinum acceptance probability
under the class-averaged classification etror critetion
can be quite accurately estimated without any prior
knowledge except the probability density function of
the class of interest.

This estimation method for acceptance probability
should be very useful when one does not have emough
prior knowledge about the data set to select the proper
acceptance probability. This unsupervised —estimation
procedure can replace the lengthy and tedious process
of manual selection of acceptance probability especially
when the given class of interest comsists of a large
number of sub-classes.
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