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Block Toeplitz Matrix Inversion using Levinson Polynomials

Won Cheol Lee*, Jong Gil Nam** Regular Members

ABSTRACT

In this paper, we propose detection methods for gradual scene changes such as .dissolve, pan, and zoom. The

proposal method to detect a dissolve region uses scene features based on spatial statistics of the image. The

spatial statistics to define shot boundaries are derived from squared means within each local area. We also

propose a method of the camera motion detection using four representative motion vectors in the background.

Representative motion vectors are derived from macroblock motion vectors which are directly extracted from
MPEG streams. To reduce the implementation time, we use DC sequences rather than fully decoded MPEG

video. In addition, to detect the gradual scene change region precisely, we use all types of the MPEG frames(l,

P, B frame). Simulation results show that the proposed detection methods perform better than existing methods,

I. Introduction

In this paper we consider the problem of
inverting positive definite hermitian block Toeplitz
matrices. These matrices occur in a wide variety
of scenarios such as time-series analysis, multich-
annel maximum entropy spectrum estimation, and
multiuser detection have been developed for their

inversion M

. Our objective in this paper is to
derive the desired inverse formulas in terms of
the associated matrix Levinson polynomial coeffic-
ients in an elementary manner. The Levinson
polynomials can be iteratively computed from the
given data without involving any inversion, and
this makes the whole solution very attractive from
a computational viewpoint. Similar formulas have
been originally obtained by Gohberg and
Semencul for a general invertible Toeplitz matrix
in a purely algebraic format 9, and in the
present approach the positive definite case is
examined from a spectral analysis viewpoint
thereby exhibiting the interrelationship between
positivity of Toceplitz matrices, the strictly bound-
ed nature of the associated reflection coefficient
matrices, and the minimum phase' character of

the matrix Levinson polynomials.

1. Positive definite Block Hermitian
Toplitz Matrix Inverses

Block hermitian Toeplitz matrices such as?

I, T I,
*
T,=| ft Fo Tn-1 o)
‘o M ) .
Tp Ty Ty

=T 0, n=0—cw

occur in multichannel situations where several
inputs interact simultaneously to generate several
outputs. Here, the matrices, r, , k=0—#x are of
size mxm and they can be interpreted as the
first (»+1) autocorrelation matrices of a jointly
stationary

x (D =[2,(nT), 25(nD), -, k(21,17 with
power spectral density matrix

wide sense stochastic vector

S(O= 3 re™ =0 @)

The nonnegativity property of the power
spectral density mattix S(4) in (2) is equivalent
to the nonnegativity of every block Toeplitz
matix T, as in (1) for k=0—c " Further,

the positivity of T,'s follows from the finite
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entropy condition ™', A (D=z" Ap(2) an
=z* A (1/2"), k=1

2 [ mdet $(0)d6 > — oo 3)
T represents the matrix polynomial reciprocal to

A,(2). The bounded character of $,'s together

with (8), guarantee the above polynomials to be
minimum phase. A direct induction argument

In this context, the objective is to obtain the
inverse of T, in a fast and efficient manner.
Toward this, consider four matrix polynomials

. i ) .
A,(2), B,(2)., C.(2) and D,(2) that satisfy using (4)-(10) also shows that the polynomials

defined above are interrelated through the nested

the recursions relations ™

Bi M@= Api(@)=2 8 G @ Au(d) B+ By(2) Au(@=1 1)
Ej By(9)= Bi1(d+z S, Dpy(2) ® Cra(2) Dy(D+ Dy(a) Cp(2)=1 (13)
Ci(2) Fy= Cpy(@—2z K (1) S © B,(2) C,(2— A,(2) D, (=10 (14
and and

Di(2) Fy= Dy j(2)—z Bei(2) S, ) An(® A, (D= Cu(2) Cpl(d)=0 (15)
starting with We can make use of the freedom present in

() - " the §,’s in (4)-(7) to relate these polynomials
Ay(a)= Cy(a)= 1,
Bg(z)= Ds(z)= r:l:/z/Z 3 to the given r; k=0—n Toward this, let

Here S,, k=1—n are a sequence of free A= Ay+ Ajz+-++ A,z" (16)

matrix parameters that are strictly bounded by
unity, ie B(z)= By+ Bzt + B,z" (17

s e d 1
I— S, 8150, k=lon ©) Clz)= Co+ Ciz+-+ C,z (18)

and further, the matrices E, and F, in (4)-(7) D()= Do+ Dizt--+ Dyz (19

satisfy the matrix factorizations and suppose S,, k=1-n are chosen so as to

E;E,=I- 5,8} 10 satisfy
FiF,=1- 85} S,
2 A2 B,(2=2 D,(2) C,'(2
For uniqueness, these matrix factors E, and = ry+2 Z:I e+ 0(z") 20

F, may be chosen to be lower triangular with

positive diagonal elements. Further, This gives

' A matrix function is said to be amalytic in |z/{1 if all it entries are analytic in |z|<]1. If, in additon, its

determinant is also nonsingular in |z|<1, then it is said to be minimum-phase
® In this paper, lower case regular letters demote scalars, lower case bold type letters denote vectors, and upper case
bold type letters denote matrices. Thus g, @ and A denote scalar, vector and matrix in that order. Further A7

represents the transpose of A, A" denotes the complex conjugate transposeof A, and def A is the determinant
of A.
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A2 B,(2+( A Y2 B.(2),
= D,(2) C;2+( D,(2 C,Y2),

= 1+ gl( rpzt+ rz.z_k)-I-O(zi("H))

and using (12)-(13), the above equation simplifies
to

(rot Bnet+ rizh @1
+0(z*") K (=2" A ;2

Cn(z)( ry+ 21( rkzk"’ r;z_k) (22)
+ O(Z :(n+1))) =zﬁ C ;1(2)

Comparing coefficients of z*, k=0—n on both
sides of (21)-(22), we obtain

[ Ag, Ay, »+. A,] T,

—[ AL 0, 0] @3
and

[ C:‘h C;—I! Ty Ca‘] Tn (24)

=[ 0,0, -, Co—l]

Direct substitution of (4), (6) into (23)-(24)
shows that A,(z) and C,(2) satisfy the
recursions in (4)-(10), provided $,'s are chosen
to be [9]

Sk:{ Ak_l(z)( ﬁl l'izi)} Ci1(0)

= Ak—l(o){(ﬁ l'izi) Ck—l(z)}

(25)

11

The boundedness of S;’s follows from the
positivity of the T,’s, and hence they represent
mairix reflection coefficient. With Sy's so
defined, (4)-(7) represent the standard forward and
backward matrix Levinson polynomials of the first
and second kind respectively.

To make further progress, returning back to
(20), we get

2B (2
=( r+2 B rie o) AR

2D (2
= c:(z)( r+2 gl rizttr O(z*"“))

1440

and comparing coefficients of like powers on both
sides and rearranging them, we obtain

RM;,=2M,; and Ny R= 2N, (26)

where
A 0 0
Myz| A1 As 0
At A A
(27)
B, 0 0
m=| Bi B 0
B, B, = B;
C: 0 0
No=| €1 Cs 0
Cc, Ci, C;
(28)
D; 0 0
N,=| Di Ds 0
D, D), - D;
and
1'0 0 0
R= 2_1‘5 21, 0
2-1': 21'-;—1 Ty
so that
R+ R"
T,=—>—"™
2 (29)
= M, M;'+ M; ' M}
as well as
T,= N]N;"+ N;! N, (30)
similarly, from (12), we obtain
[MS M,}[ M; Ml]
0 M, 0 M;
S e | It I
0 M1 0 Mn
:[ 0 In+1
0 0

where
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0 0 0 0
M| & D v 9

A, A, A, 0

0 0 0 0 32)
My=| Br ] v 0

B, B, B, 0

M; M,+ M, M3+
Mi M+ M; M = I, (33)
M;M;+ MIM,=0
so that
M= - M, M; M;' (34

Substituting (34) into (33) gives
M; M;+ M} M,
- M,(M;'Mi+ M, M) M}

= I,

and hence
Mi( M, M+ Mg M) M,
- M,( M; Mg'+ M{7' M) M;, (35)

= IL..

Using (29), the above expression simplifies to
M; T, Mqp— M, T, M,= I, (36)

Similarly, from (13), we obtain

[ N, No][ N; N,
0 N3l 0 Nj
+[ N3 N1H N N: 67
0 N; 0 Ny
=[ 0 In+l]
0 0
where
0 0 0 0
Na[ S0 0
C, C, = Cn 0
0 o - 0 0 (38)
Np=| Do 0 000
bl i)z bn 0

Expanding (37), we obtain

N, N,+ Ny N+
Nj; N,+ N, Ng= L4, (39)
NN+ N;N;=0
s0 that
N,=—-N;! N, N, (40)

A direct substitution of (40) into (39) gives

Ny Ni+ N, Nj
— N3y N;!' Nj+ NI N Y N, (41)

= In+l

As before, using (30), this gives the compact

form

Ny, T, Nj— N, T, N,= I, 42)
Finally, from (14), we get
Mi Mz][ N3§ N,.]
0 Mi| 0 N
15 AN e
0 M, 0 N,
189
0 0
and this gives

M N,+ M; N;
— M§ N;— M, NI=0 “4)

And

M; M;!'= Ng! Ny or
*— * L} *— 4
M01M1=N1N01 (5)

To proceed further, Substituting (34) and (40)

into (44) gives

M; N,- M, M, M()_]NG
+ MjNy! N, N,— M, N{=0

or,
(Mi- M{Ng! Nj) N,-
M,( M, M{'Ni+ N))=0
or,
Mi M;'!Mi+ N;' N)) N,—
M,( M; M+ NI N ) Ny (46)
= ()
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Moreover, by making use of (45), the above
equation can be rewritten as

(MM
M 1

M M;) N
Mu IMO_ IM

M, -
( M;'M})N; @7
0

and together with (29), this gives

M; T, N,.— M, T, N;=0 (48)
As a result,
M, T,= M; T, N, N;! (49)
and
T, N,= M;"' M, T, N§ (50)

Finally, substituting (49) into (36), we obtain
M; T,( My— N, N;'M;)= L,
Thus

T,( M— N, Ny7'M))=M; "o
(51)
T.'= My M;— N, N;™!

Altemnatively, substituting (50) into (42), we get
( Ng- NJM{;' M,) T, Ni= L,
Hence

( No— N.M;'M,) T,= N; o
(52)
T;'= N§ No— N, N; 7'M, M;

Finally, the remaining equation (15) can be
used to further simplify (51)-(52). Rewriting (15),
we get

M:x MO M5 Mn]

0 M, 0 M;
T e
0 Nil 0 N
139

00

1442

Thus
N,=N}"'Mi,M; or
M,=NjN:M;! (34)
and using this in (51)-(52), we obtain
-1 L *
T;!= My M{~ N, N_ (55)

=Nj Ny- M, M,

the desired formula for the inverse of a
positive definite Hermitian block Toeplitz matrix.
To summarize, the inverse of the positive
hermitian block Toeplitz matrix generated from,

I, Ty, T, involves only the coefficients of
the forward and backward matrix Levinson
polynomials of the first kind, that can be
computed tecursively from (4),(6),(8),(10) and
(25). In the single channel case, from (4)-(10)
since, C,(2)= A,(2), in particular, we have

Ny= M,, N,= M, and (55) reduces to one
representation for T ;!. Finally, if the given
block Toeplitz matrix T, is nonsingular, but not
positive, the §,’s in (25) will not be bounded by
unity (see(9)), and hence E,’'s and F,’s are
undefined in (10). Moreover, the matrix
polynomials in (4)-(7) will not be minimum
phase; nevertheless it is possible to derive
formulas similar to that in (55) for the inversion

of general block Toeplitz matrices >,

L. Conclusions

Inversion formulas for  positive  definite
hermitian block Toplitz matrices are expressed
here in terms of the coefficients of the associated
forward and backward matrix Levinson Polyno-
mials of the first kind. When the block Toeplitz
matrix is positive definite, these matrix polyno-
mials are minimum phase, and further they can
be recursively computed from the given block
matrix entries without involving inversions of any
kind.
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