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Analysis of MMPP/M/1 Queue with several homogeneous
two-state MMPP sources

Gyemin Lee*, Soohan Ahn**, Joongwoo Jeon** Regular Members

ABSTRACT

In this paper, we suggest a simple computational algorithm to obtain the queue length distribution in the finite
queue, where the input process consists of several homogeneous two-state Markov modulated Poisson processes.
With comparison to the conventional algorithm, our algorithm is more practical, in particular, when a large
number of input sources are loaded to the system,

ant property which makes it suitable for

I. Introduction approximation of complicated non-renewal proces-
ses. By using a multiple-state MMPP or a super-
Integrated  service communication  systems position of several homogeneous two-state MMPP
usually have very complicated input streams. A as an arrival proc- ess, various computer and
typical example is a statistical multiplexer, whose communication systems have modeled, and then
input consists of a superposition of packetized solved by the matrix- geometric algorithm I,
voice sou- rces together with data traffic’™. or the folding algo- rithm
The number of packet arrivals in adjacent time However, these algorithms are computationally
intervals can be highly correlated, which turns the intensive and impractical, especially when state
input process into a complex non-renewal process - space of the aggregated arrival process of several
and significantly affects queueing performance of homogeneous MMPP sources is large . This is
the system. usually the case in communication networks since
Thus, a great interest has recently arisen in the we may expect to have a large number of source
modeling of the superposition of traffic streams being served by a single statistical multiplexer.
and in the analysis of the resulting queueing Thus, we study a simple computational algorithm
model. solving the queucing model, where the input
Within this framework, various input processes process consists of several homogeneous two-
have been stdied. A particularly interesting point state MMPP sources.
process is a well-known Markov modulated This paper is organized as follows. Section 2
Poisson process (MMPP). It possesses an impori- present a simple algorithm to analyze the system
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loaded with a single two-state MMPP source. In
Section 3, we extend the proposed algorithm to
the sys tem where the input process consists of a
large number of homogeneous two-state MMPP
sources.

I. An two-state MMPP/M/1 Queue

In this section, we consider a single sever
queu- eing system where customers arrive in
accordance with a two-state MMPP, Upon arrival,
they can enter the system only if there are less
than K customers in the system. Service time
distribution is exponential with rate 4.

Before analyzing the system, let us briefly
desctibe a two-state MMPP. It is a double ly
stochastic Poisson process, whose mean arrival
rate changes according to the state of a
underlying  two-state = Markov  process. The
generator of the underlying Markov process and
the mean arrival rate matrix shall be denoted by

—a a A0

Q= and A=

b —b 0 A,
respectively. We easily observe that the stationary
vector § of the stocha stic matrix ¢ is equal to
(a+ 5" (b,a) and the traffic intensity o of this
queucing system is equal to u”' @A e, where
e=(1,D"%

Now we derive the queue length distribution of
the system. Let X(#) and J(# denote the queue
length and the state of the underlying Markov
process at time ( Then the couplet (J(#,X(n)
is a two-dimensional Markov process with the
following infinitesimal generator

Q—A A
ul Q@—AN—upul A
Qa=
Q-—A—ul A
ul Q—ul

where 1 is an identity matrix of order 2. Note
that @, is a matrix of size 2Kx2K. Our aim is
to find the following stationary joint distribution

Tin= l‘i_‘n‘;lnPr(](t) =, X(D=mn)

for all ;=1,2, 0<xn=<K. For the sake of nota-
tional convenience, we set px=] and write x&,
=(xy g, for all 0<a<K. Then it is well
known that ( xp, -, 7x)Q.=0 and

(1-2[ my—2"*" mxAl”
= 7(2) [+ 2(Q—A—D+2%A] ¢}

where 0=1(0,0) and x(2)= ﬂﬁn T,z To

solve the above equation, let us again define the
matrix  ®(2)=A+2Q-A~D+2%U and its
determinant ¢(z). Since the determinant ¢(z)=
(1—z(a+ A, +1)+ 220+ 1) [1—2(b+ A+ 2%4,]

— abz?, we directly derive the follow- ing lemma.
See [3] for the details.

Lemma 1 The determinant ¢(z) of the matrix
@(z) has four positive roots, denoted by o), a,,
B8, and B, in order. If traffic intensity o is less
than one, the roots satisfy o,<a<(8,=1¢83
Otherwise the roots satisfy o,¢a;=1¢{48,¢{8..

In similar way in [3] and [1], we can solve
the equation (1) through the matrix-geometric
algorithm. For this purpose, define the following

four matrices
a1 0 [91 0
Vl; , Vz:( ]
0 a 0 ,Bz
and
a; &
L1= R Lzm
&y B2

where @, a, B; and B, are left ecigen-

vectors of the matrix @&(z) corresponding to four
roots a@,, a; A, and A Murthy et. al. proved
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that @, and o, are eigen-vecors of the minimal
solution of the following nonlinear matrix
equation:

A+RQ-A—D+R*=0

and that «, and o, are ecigenvalues of the
B Similarly 8,, 8; 81,
and 8;' are so with rtespect to T+ R(
Q-A-D+R*A=0. Thus both L, and L, are

minimal solution R in

invertible. Using these four matrices, we derives
the following theorem for the queue length
distribution.

Theorem 1 The queue length distribution is given
by

T, le(I_ Vl)V{‘Ll
+ wr(l—- V) Vil (2)

where ( wy, wx) is a left eigen-vector of

matrix

LiQ VE'L,Q
3

LyQ ViHL,Q

for a zero eigen-value and normalized so that
1= wu(I-VEDL e
+ wig(I-Vi DL, e @

Proof) By the simple algebric manipulation, it is
easily shown that

LOQ=I-V)ILL{Q-A)+ViL,
0=A+V,LQ-A-D+ViL,
VILQ=(I-V)L A
+(I-VY)V.L(Q-D

for all i=1,2. From this fact and the equation
(3), we easily know that ( xy,-, 7g) defined

in (2) is a unique stationary vector of the
stochastic matrix @, So the proof is complete.
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The method presented here unifies the finite
and infinite queue system in a single frame work
In order to see this, let us look at coefficient
vectors wy and wy defined in Theorem 1
when the queve size is infinite and traffic
intensity o is less tham one. Since
a1 {a1<A KBy VET! goes to zero and VEH!
diverge as K—oo. Thus, in order to satisfy
normalization equation (3), the coefficient w g
becomes to be a zero vector. This fact derives

that we;= 6L;', which is equal to results in
B3l

H. Several two-state MMPP/M/1
Queue

In this section, we extend results in Section 2
to the system where customers arrive in
accordance with a superposition of several homo-
geneous two-state MMPP sources. To do this, let
us first describe the input process. When m
homogeneous two-state MMPP sources with
parameters (@, /1) defined in Section 2 are
superposed, the generator of the underlying
Markov process and the mean arrival rate matrix
of the superposed process are given by

—ma ma
(m~1)a —(m—1)a—b
Q,=
—a—(m—1b a

mb — mb
andA,,,:dZag(”M 1,(m_1)A1+A2,"‘,W2).

It is also well known that the stationary vector
of the matrix @, is given as follows;

On="ar o™ ((’g)bmao""'(z)boam)
and that the traffic intensity p,, of this system is

equal to mp, where p is defined in Section 2.
Now we derive queue length distribution, In
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similar way as we did in Section 2, write

7 5= Um Pr(X(dy=n, K)=1),

1=i=m+1,0=n<K.
Jmln, m+1)), 0=<n<K. Also we define,
(D(Z)=A,,,+z(Q_m—".Am—~;uI)+z2}

that is,
(dnl2)  maz
| b daeta)
oa=| 2
' ’;‘-.:dl(z) az
mbz a’()(z)'

where d(2)=kd,+(m— B i~ z[Ka+ti))
+(m—B(b+A,)+1]+2% Using the fact that

m—k
m

dk(z)=%d,,,(z)+ dy(2), we. can show that

the determinant ¢(z) of the matrix @(z) is given
by . y

( M2
"1 o),

) o
d s 2) ”:l;llo s2), if mis even

if m is odd
¢(z)={

where s (2)=d {2)d _(2) — (m—2k) Zapa?,

From this fact, we derive the following lemma.

Lemma 2 The determinant ¢(z) has 2m positive
roots, denote by a,,--,a, and B, A, in
order. If traffic intensity o, of the system is less
than one, the roots satisfy a,(<{e,{(8,=1
(B, Otherwise, the rooté satisfy a@,¢-¢
a,=1{B << B m

Proof) We easily observe that d,(0)<0 and
d(1)>0 for all %=0,1,-,m, so thatdy(z)
d ,—{2) has four positive roots x,<xX1<x3<xy
It easily is shown that s,(1)=2Km— kXa+ "
Thus we know that s,(z) has four positive roots
satisfying v, <y 1<{y;<y, for all k+(0 and that

so(2) has four positive root y,,vsv; and y,

and m,=(an, 1),

satisfying v,{ y,=1<y{ yq or ¥, {yy3=1{y,.
Now, we shall prove that determinant ¢(z)
does not have multiple roots. If#, is a root of

si(2), then st=(m—k—D(I—R([(A; —A})
(=1 +(a— b)) +4ablt? - for  I#k  Thus
determinant ¢('z) has 2m distinct roots. So, the
p}oof is complete. '

Since d (2)d'-4(2) — (m—2k) "abz® =0 are poly-
nomial equéticm ‘of order -4, we can easily derive
all roots of the determinant ¢(z). In similar way
in Section 2, define L, L,V and V, and

then detive w g and: w g satisfying °

L@ Vif'L.Q

Wy wi) =0
e L,Q VFfT'L,Q

and wg (I-VEYL, et we(I~ VE™Y

L,e=1; Then the queue length distribution can
be obtained by equaiion (2) in Theorem 1. The
gbove procedure above does not requires to
compute inverse matrix as in [4] or to solve
nonlinear matrix equation as in [1]. Consequently,
it enables us to derive queue length distribution
with less amount of computational work,
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