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Compensation of the Sample-and-Hold Circuit in an AD
Converter Used in Radio Telecommunications
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ABSTRACT

In this paper, we propose a neural network approach and a ditect Volterra series model approach to the
compensation for the nonlinearity of a sample-and-hold circuit placed forward of A/D converters. We compare the
performance of the proposed approaches with that of the conventional pth-order inverse method based on the
Volterra series model. The proposed approaches use optimization techniques whereas the pth-order inverse method
is basically a system inversion technique. The results show that any one approach can not be said to perform
better than the others since each approach has its own pros and cons. One should choose a method based on the
signal statistics, levels, and the degree of the nonlinearity.

improves the ADC performance since the distortion is

I. Introduction

The trend in telecommunications is clearly from
analog to digital. Thus, it is inevitable that analog-
to-digital converters (ADC) be used in radio receivers.
However, the nonlinear distortion generated by the
ADC greatly reduces the dynamic range of the
receiver, It is well known that placing a sample-and
-hold circuit forward of the ADC significantly

strongly dependent on the analog input signal
variation during the conversion. Despite the great
improvement in overall ADC performance, there is
still room for research in the compensation of
nonlinearities introduced by the sample-and-hold
circuits.

To eliminate or compensate the nonlinear effects in
ADC, many researchers have developed methods
based on a look-up table. In this method, the distorted
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output code of an ADC is mapped to the correct code
through the look-up table. Rebold and Irons used a
two-dimensional phase-plane approach for the
nonlinear compensation of ADC at the output [1].
Later, Irons et al improved this method by using three
frequencies for calibration [2]). Dent and Cowan
developed a technique called threshold tracking to set
up a look-up table [3]. Hummels ez al utilized a
method using sub-samples to design an error
correction table at the ADC output [4].

Usually, the output of the sample-and-hold circuit is
dependent upon the previous sample values, meaning
the sample-and-hold circuit possesses system memory.
Nonlinear systems with memory can be modeled with
a Volterra series model [5]. Tsimbinos and Lever
modeled the sample-and-hold circuit with a Volterra
series model and applied the pth-order inverse method
to compensate the nonlinearities [6].

In this paper, we use three approaches to the
compensation of a nonlinear sample-and-hold circuit
used in radio communications. The three approaches
are the neural network approach, the direct Volterra
series model approach, and the pth-order inverse
method based on the Volterra series model. The first
two approaches are newly attempted in this work. We
will compare the three approaches using the mono-
tone and two-tone tests,

This paper consists of the following steps. In
section II, we will describe the sample-and-hold
circuit model used in this study. In section III, the
Volterra series model of the sample-and-hold circuit is
presented along with a brief discussion of the
conventional pth-order inverse method. In section IV,
we present the neural network approach to the
sample-and-hold circuit compensation. In section V,
the direct Volterra series model approach is presented,
The results of the three methods are compared and
discussed in section VI. In section VII, we will
conclude our work.

I. Sample-and-Hold Circuit Model

The nonlinearity in a sample-and-hold circuit is
caused by input-indepedent and input-dependent
timing jitters [6]. Tsimbinos and Lever obtained a

1896

mathematical mode] for the sample-and-hold circuit
output f{ +) as follows [6]:

Ra(D)=a(t+ ) +q(x(D), )

where x(f) is the input to the sample-and-hold
circuit, 7(f) is the input-independent timing jitter and
q(x(?)) is the input-dependent timing jitter. The
input-independent timing jitter is due to the sampling
interval variations, whereas the input-dependent
timing jitter occurs due to the imperfect operation of
switching diodes [7].

If 7(f) and g(x(f)) are very small compared with ¢ (in
the discrete time case, the sampling interval T), we
may use a Taylor expansion of Eq. (1). Taking the
first two terms of the Taylor expansion, we have

KD+ 2 () 7 () +x' (Dalx(8). @

Since g(x(2))=c(1~|x(H) [7], and as we are only
interested in the distortion term, Eq. (2) can be
simplified to

Ra(D)z=a(8) + o’ (D(1 — [x(I) ©)]

where ¢ is a constant determined by circuit

parameters, We can approximate x'(#) using sampled
values as in

x’(t)m 4 _Tn_ (4)

where T is the sampling interval. Therefore, in
discrete time form, Eq. (3) can be approximated by

R nd) =l 7] +—;(x[ n]—xln—1DA— ld#]) (5)

From Egq. (5), we can see that the output of the
ADC comprises a linear term and nonlinear terms.

Ii. The Volterra Series Model and
the pth-order Inverse Mathod

To apply the pth-order inverse method, we must
have a Volterra model of the system. Accordingly, Eq.
(5) should be converted to a Volterra series form
which, in the discrete form, is expressed by
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where N, Ny, Nj, ... are the memory duration of
the first order, the second order, the third order terms,
andsoon. iV, f P ,, and 7% ,, ,, are the first,

second, and third order Volterra kemels, respectively.
Tsimbinos and Lever used two methods to calculate
the Volterra kernels of the sample-and-hold circuit of
Eq. (5); the Lee-Schetzen method [S] and an adaptive
method [8]. With the adaptive method, they obtained
the Volterra kernels up to the fifth order as shown in
Table 1 [6]. The even order kernels are zero as we can
see from Eq. (3) that the nonlinearity is basically of
type xjx|. Even if they were not zero, they would not
generate in-band interference signals.

Once the Volterra model is obtained, we can apply
the pth-order inverse method to get the inverse
Volterra model. The pth-order inverse method
connects another Volterra system in tandem to the
nonlinear systetn to be compensated such that the
overall system kemels are zero up to the pth-order
except the first order kemels which should be a unit
impulse [5].

Table 1. Volterra kernels obtained from the mathemati-
cal model with an adaptive method, from [6].

Linear Part 3rd-order part Sth-order part

7 8= 0.000313
£ 3= 0008109 | 7 {By= -0.000133
£ 01007628 | 7 8= 0003858 | £ $hp= -0.000133
£ 9=0,013607| 5 B+ 0.003858 | £ Ep= -0.000133
£ 3= 0003858 | f&,= -0.000133
£ $n= 0000133

In Fig. 1, we show the concept of the pth-order
inverse method. F is the Volterra model to be
compensated, the kemels of which are known, and G,

is the Volterra system used for nonlinear compensation
the kernels of which are to be determined. From the
condition that the overall system must be linear up to
the pth order, we can calculate the Gy, system kernels
in terms of the F system kernels [5]. In Fig. 2, the
block diagrams to obtain those unknown kernels are
shown up to the third order. We can see that to obtain
the kernels of the inverse system involves complex,
successive multi-dimensional convolutions. Using the
pth-order inverse, Tsimbinos and Lever obtained more
than a 20 dB suppression of the third harmonic using a
mono-tone test input signal [6].

xlnl Volterta vinl p'll\-order yIn} = x[n} + ¢;lx]
] System inverse [t
F G )
(a)
xln] phorder |y [p] Volterra | y[n] = x[n] +e,(n]
———={  invemse System [
G ¥

(b)

Fig. 1 A block diagram showing the idea of pth-order
inverse method. The pth-order inverse system Gy
is connected in tandem to the Volterra seties

model F.

xln) G [am]

[CH]

(&)

o]~ G fan]

Fig. 2 Block diagrams of the inverse system. (a)
first-order system (b) second-order system (c)
third-order system.

IV. Neural Network Approach

In this section, we propose a new alternative method
for nonlinear ADC compensation using a neural
network. To use the neural network method, there is
no need to convert the existing model to a Volterra

1897

www.dbpia.co.kr



YELEAI S =T2] "00-11 Vol25 Nol1B

model. The key idea is just to determine the mapping
from the distorted output data set to the undistorted
input data set, Since the sample-and-hold circuit has
system memory, we used a modified time-delayed
neural netwotk (TDNN) shown in Fig. 3. This
network can be shown to approximate the Volterra
series model if we have enough hidden units [9].

In Fig 4, we illustrate the idea of ADC
compensation using a neural network in a block
diagram form. The input to the neural network y[n] is
the output of the system to be compensated and the
desired output is the input of the system x[n]. As the
ertor x[n] - o[n] goes to zero, the output of the
network approaches the input, which is the desired
output of the overall system.

Simple as it is, the neural network method also has
limitations. The neural network does not provide any
physical insight into the system. For example, the
neural network compensator can not be decomposed
into a linear, a cubic systems, and so forth. Moreover,
since the training algorithm is based on the stochastic
gradient method, the convergence speed is slow and
there is no guarantee of converging to the optimal
solution. On the other hand, the neural network
method, in principle, can approximate any function to
an arbitrary accuracy [10, 11].

output
o[r?]

ylnl
idden layer

Fig. 3 A neural network diagram with delay elements
used for nonlinear system compensation.

V. Direct Volterra Series Model
Approach

If the nonlinearity of the system is not of a very
high order, we may use a Volterra series model as a
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compensator. In Fig. 5, we show a block diagram to
compensate a nonlinearity using a Volterra series
model. For training the Volterra series model
equalizer, we use the RLS algorithm[12] since the
Volterra series model equation is linear with respect to
its kemel coefficients, In Fig. 5, @ [n] is called the
innovation since it contains the information which can
not be predicted by the previous kemnel coefficients.

AN

Neural Network
Equalizer

*[n] Nonlinear yia] a[n]
P Sample-and-Hold [————w

Circuit

g[n]

+

Fig. 4 A block diagram showing the training of a neural
network compensator,

AN

Volterrs Series ola]
Model Bqualizer

x[n] Nonlinear yinl
Sample-and-Hold
Cirouit

Fig. b A block diagram showing the training of a Volterra
series model compensator,

The direct Volterra series model approach has some
advantages over neural network appraoch and the not
be predicted by the previous kernel coeffients,
pth-order inverse method. Since the direct Volterra
series model approach is based on an optimization
technique, it does not generate higher-order
nonlinearities as is the case for the pth-order inverse
method. Since the direct Volterra series model
approach requires fewer coefficients than the neural
network approach, the required data set is smaller.
Moreover, training is faster with the RLS algorithm
than with the error backward propagation algorithm,

However, if the order of the major nonlinearity is
high (i.e., = 5) and the memory length is long (i.e., =
5), the number of kemel coefficients becomes very
large. In such cases, the neural network approach will
be more suitable to apply. Since the number of
weights of neural networks can be increased linearly
instead of exponentially as opposed to the Volterra
series model approach, the redundancy of weights
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becomes less significant when compensating higher-
order nonlinearities. In contrast, the number of
Volterra kemels grows tremendously when applied to
highet-order (say, = 5) nonlinear compensation.

VI. Results

We used Eq. (5) to model a sample-and-hold circuit
with ¢ = 0.02 as in [6]. The input to this model was a
random signal uniformnly distributed between -3.0 and
3.0. The output of this model was used as the input to
the compensators and the input of the model was used
as the desired output for training. The dimension of
the neural network was 3 X5 x5 X1 (three input units,
five first hidden-layer units, five second hidden-layer
units, one output unit). The memory of the third-order
direct Volterra series model compensator was set to
one. Therefore, the total kemel coefficients were 6.
This compares with the 45 weights of the neural
network compensator.

%An 5
‘Be60 L
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0.5

1 15 2 1.5 3 4 45 H
Frequency|MHz] 1

Fig. 6 Spectral distribution of the uncompensated output
of the sample- and-hold circuit corresponding to
the mono-tone input. The mono-tone input
frequency is about 0.98 MHz. The “a” represent
the fundamental frequency.

We tested the trained compensators with a
mono-tone signal. We assumed a sampling frequency
of 10 MHz. The test mono-tone signal was about 0.98
MHz. A mono-tone was used to facilitate comparison
with the mono-tone test results of Tsimbinos and
Lever using the pth-order inverse.

In Fig. 6, we show the spectral distribution of the
output signal of the sample-and-hold circuit model fed
an input containing a mono-tone of frequency
approximately 0.98 MHz (marked “a”). We observe a
third-order harmonic (3a) and a fifth-order harmonic
(5a) with levels of 40.87 dB and 53.45 dB below the
reference tone. The other frequency components are
the higher-order harmonics aliased back into the lower
frequency band.

In Fig. 7, we show the spectral distributions of the
compensated mono-tone signal output. In Fig. 7(a), we
show the ncural network result. Placing the neural
network compensator right after the sample-and-hold
circuit, the amplitudes of the third- and fifth-order
harmonics (3a and 5a, respectively) are reduced to
-58.65 dB and -62.84 dB. With the direct Volterta
series model compensator, as shown in Fig. 7(b), the
third-order harmonic (3a) is reduced almost to -90 dB.
However, the fifth-order harmonic is not suppressed
since we used a third-order Volterra seties model. Fig,
7(c) shows the result of the pth-order inverse method.
Harmonic suppression to -71.87 dB and -63.31 dB for
the third-order and the fifth-order harmonics,
respectively, were obtained. Even with the pth-order
inverse up to fifth order, the third- and fifth-order
harmonics were not completely removed. This may be
due to the fact that, to apply the pth-order inverse
method, we must convert the existing model to a
Volterra series model. Modeling error may cause
imperfect compensation.
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Fig. 7 Spectral distributions of the compensated mono-
tone sample-and-hold circuit output signal. (a) the
neural network approach (b) the direct Volterra
series model approach (c) the pth-order inverse
method. the “a” represents the fundamental

frequency.

Third-order harmonic suppression using the neural
network approach is worse than that of the pth-order
inverse method. A possible explanation may be
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destructive interference between the third harmonic
and a higher order harmonic aliased back at the third
harmonic frequency in the pth-order inverse case. To
investigate further, we used a two-tone signal test and
a random input test.

In Fig. 8, we show the spectral distribution of the
distorted two-tone signal. We used 0.98 MHz and 1.47
MHz tones. We marked the harmonics and their
inter-modulation  frequencies. The  frequency
components of 0.98 MHz and 1.47 MHz are marked

wn

as “a” and 'b”, respectively.

;; b zhl ln o T+l 4]l w 5
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2 15
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Fig. 8 Spectral distribution of the uncompensated output
of the sample -and-hold circuit corresponding to the
two-tone input. The two-tone input frequencies are
about 0,98 MHz and 147 MHz. 0.98 MHz is

marked as “a” and 1.47MHzas “b” .

We tested the neural network, the Volterra series
model, and the pth-order inverse compensatots using
the two-tone signal. In Fig. 9, we show the spectral
distributions of the compensated outputs. The neural
network appears to have a better performance than the
pth-order inverse method in this test. In Table 2, we
compared the suppression of inter-modulation
products using the three approaches. The inter-
modulation components 2b-a, 2atb, and a+2b are
lower for the neural network approach than for the
other approaches. The direct Volterra series model
approach has larger inter-modulation components,
However, considering the number of kernel
coefficients and the design simplicity of the direct
Volterra series model approach this should not be a
problem.

For the random input test, we used a uniformly
distributed input signal with amplitudes between -3.0
and 3.0. We input the random signal to the
sample-and-hold circuit model represented by Eq. (5).
The output is then fed to the equalizers obtained using
the three approaches. We measured the normalized
mean-squared-error (NMSE) of the equalizer outputs

1900

which is defined by

_— 3 K- d Al -
> LAl

where x[k] is the input to the sample-and-hold
circuit
Table 2. Comparison of suppression (in dB) of the

inter-modulation  products using  vatious
approaches.

b 2b-a 2a+b 2b+a

Neural network {{ 0 -69.4 -70.3 -65.1

Volterra mode] | 0 -64.1 -57.4 -57.9

pth-order inverse| 0 -66.4 -63.6 -60.6

which is the desired output of the equalizer and o[k]
is the equalizer output. K is the total number of test
data.

The normalized mean-squared-errors of the test
results were 5.0%10°,2.0x10”, and 9.0 X 10* for the
neural net approach, for the direct Volterra series
model approach, and for the pth-order inverse method,
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Fig. 9 Spectral distribution of the compensated two-tone
sample-and-hold circuit output signals. (a) the
neural network approach (b) the direct Volterra
model series approach (c) the pth-order inverse
method. 0.98 MHz is marked as “a” and 1.47

MHz as “b”.
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respectively. These results show that we can not say
that any one approach is better than the others.
Depending on the signal statistics and levels, the
performance of each approach may vary.

For low-order nonlinearities, the direct Volterra
series model is very simple and easy to implement.
Although the neural network performs better, it
requires many weights since they are redundant. These
two approaches are based on optimization techniques
whereas the pth-order inverse method is based on a
system inversion technique. The design procedure of
the pth-order inverse method is very complex
including a linear system inversion and successive
multi-dimensional convolutions,

VI. Conclusion

We described different methods of nonlinear
compensation using a neural network or a direct
Volterra series model to implement the mapping from
output data to input data. Compared to the pth-order
inverse method, the neural network and the direct
Volterra series model compensators are extremely
simple to implement. Furthermore, the harmonic
suppression is quite substantial, comparable to that of
the pth-order inverse approach. We achieve nearly the
same performance as in the pth-order inverse model
despite the much simpler design procedure.

The direct Volterra series model approach requires
very small number of filter coefficients when the order
of the nonlinearity is low and the memory span of the
system is short. However, to compensate for the
higher-order nonlinearity, the direct Volterra series
model approach as well as the pth-order inverse
method requires tremendous number of kemel
coefficients. When the order of nonlinearity is high,
the neural network method is highly preferable,
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