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ABSTRACT

NewReno has been proposed to improve the performance of TCP by preventing unnecessary timeout, which is
due to multiple packet losses from a single window. It can recover multiple packet losses without any changes at
receivers, and has a few variants differing in procedures during recovery. But it has a limitation that it can
recover only one packet during ome RTT. It takes a long time to recover multiple packet losses. Therefore
NewReno can still suffer from performance degradation if it experiences multiple packet losses in its start-up
period. As the network bandwidth grows and the applications that use short-lived TCP connections increases, the
start-up period forms a major part in a connection, and the overall performance depends significantly on its
start-up dynamics.

In this paper, we show the importance of start-up transition dynamics of TCP NewReno with and without
partial window deflation (PWD) and show their- behaviors through extensive simulations. Particularly, we focus on
the dynamics during Fast Recovery

1. Introduction timeout and the other is Fast Retransmit followed

by Fast Recovery [1] [2]. After a packet is sent,

TCP has two important recovery procedures to if the corresponding ACK is not received within
provide reliable communication between the sender a calculated retransmission timeout (RTO), the
and the receiver. One is the retransmission by timer expires, and the sender retransmits the
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packet and restarts its Slow-Start. Fast Retransmit
makes the sender retransmit the packet
immediately after receiving three duplicate
acknowledgements (ACKs) rather than wait for
the timer to expire. In TCP Reno, Fast Recovery
prevents the sender from entering Slow-Start after
a single packet drop from a window.

But in TCP Reno, when multiple packets are
dropped from a single window, Fast Retransmit
and Fast Recovery can recover only one of the
lost packets. The rest are often recovered by
Slow-Start followed by timeout [3] [4]. Especially
when the sender starts its data transfer without
any information about the network capacity, it
usually ends up outputting too many packets and
thus experiencing multiple packet losses from a
window,

When there are multiple packet drops, the first
dropped packet is  retransmitted by Fast
Retransmit. The ACK for the retransmitted packet
will acknowledge some but not all of the packets
transmitted before Fast Retransmit. It is called a
partial ACK. In TCP NewReno the sender
responds to a partial ACK by inferring that the
indicated packet has been lost, and retransmits the
packet [5]. After all the losses are recovered, the
sender continues its transfer in Congestion
Avoidance. Since this modification avoids timeout
and ensuing Slow-Start, the improvement of
throughput and the reduction of unnecessary
retransmissions are expected.

In this paper we first briefly introduce variants
of TCP NewReno in Section II. In Section III,
we show the importance of start-up transition
dynamics of TCP NewReno. Then, we compare
NewReno variants through simulations in Section
IV, followed by the conclusions in Section V.

0. TCP NewReno variants

TCP NewReno includes an important change
from Reno algorithm at the sender. It eliminates
unnecessary timeout when multiple packets are
lost from a window. NewReno treats a partial
ACK as an indication that the packet immediately
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following an acknowledged packet in the sequence
has been lost and should be retransmitted. The
reiransmitted packet, if not dropped, causes
another partial ACK or a positive ACKD. Thus
TCP NewReno can recover from multiple packet
drops without unnecessary timeout.

[5] proposes several possible variants of
NewReno according to the response to partial
ACKs: when to reset a retransmit timer after a
partial ACK, how many packets to be
retransmitted after each partial ACK, and whether
the sender avoids multiple Fast Retransmits caused
by the retransmission of packets already received
at the receiver. Since we investigate the situation
where multiple packets in a window are dropped
in transition, we use NewReno variants that have
the following properties.

» Resets the retransmit timer after receiving each
partial ACK (Slow-but-Steady variant).

e Retransmits a single packet after receiving
each partial ACK.

¢ Avoids multiple Fast Retransmits (Less careful
variant).

Another classifier of TCP NewReno algorithms
is whether the partial window deflation (PWD)
algorithm is used or not [5]. Using the PWD
algorithm, the sender considers another packet is
dropped. On receiving a partial ACK, the sender
retransmits the unacknowledged packet indicated
by the partial ACK. It also deflates cwnd by the
amount of data newly acknowledged instead of
resetting c¢wnd to the Slow-Start threshold
(ssthresh), and adds back one packet to cwnd.
Then it sends a new packet if new cwnd permits.
This algorithm attempts to prevent packet
burstiness when Fast Recovery eventually ends, by
making approximately ssthresh amount of data
outstanding in the network. In contrast, NewReno
without PWD reduces cwnd to ssthresh when it
receives a partial ACK. If multiple packets are
dropped from a window, the sender can send

1) The positive ACK informs the sender that all packets
sent before Fast Retransmit are successfully received
at the receiver, that is, all lost packets are recovered.
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only a few new packets during a lengthy recovery
period and can not avoid packet burstiness after
Fast Recovery.

bottlanack bandwldtn
= 1.6Mbps

Routert Router2

Fig. 1 Simulation topology

. Simulations: Start-up Transition
Dynamics

Since the sender has no information about the
network capacity in its start-up period, it can not
choose a proper initial ssthresh and often sends
too many packets, leading to packet losses.
Therefore TCP usually makes its first transition
from Slow-Start to Congestion Avoidance by loss
detection when cwnd is below ssthresh. We
investigate how often and how many a TCP
sender experiences multiple packet losses during
its start-up period.

All our simulations are done with the NS
simulator (version 2.1b5) [6]. Fig. 1 shows a
simple topology for our simulations, The TCP
connections are driven by long-lived FTP sessions.
The bottleneck bandwidth is 1.6Mbps unless stated
otherwise. We wuse RED [7] as a queue
management policy at Routerl. The physical
queue length limit is 60 packets, the minimum
threshold (minys) 5 packets, the maximum
threshold (max;) 15 packets, and the ‘linear term
(maxp) 0.1. We assume that all packets have the
same size of 1000 bytes. The advertised receiver
window size is set to infinite, to not affect the
sender window size. Other parameters are set to
default values.

As shown in Fig. 1 we establish n TCP
connections at time 0 and wait 50 sec for them
to be stable in the steady state. Then we make a

RTO
Lol 1 drop B3N 3 drops
EZ2 2 drops over 3 drops

S 50

B %]
3 2]
104

o

3 4 5 8 7 8 9
number of existing TCP connections

(a) Without delayed ACK

p &89 3drops
ps B over 3 drops

Tu
SN ZZ 2

3 4 5 6 7 8 a
number of existing TCP connections

(b) With delayed ACK

Fig. 2 Statistics of detected drop patterns with 1.6Mbps
bottleneck bandwidth,

new TCP connection with a random delay and
trace it to see how many packets are dropped
before the sender detects the first drop. We
change n from 3 to 9 so as to accordingly reduce
the fair share per connection in the simulation.
Fig. 2 shows how the newly starting TCP
connection detected its packet loss. In the figure,
‘RTO’ represents the fraction of losses detected
by timeout whereas the others do them by Fast
Retransmit. In case Fast Retransmit is triggered,
we count how many packets sent before Fast
Retransmit are dropped, and classify them into 1
drop, 2 drops, 3 drops, and over 3 drops. Among
them, 2 drops, 3 drops, and over 3 drops are
multiple drops.

Both Figs. 2(a) and 2(b) show that multiple
drops frequently occur. Multiple drops is dominant
even when the number of existing TCP
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connections is small in Fig. 2(a). Although the
percentage of multiple drops decreases as the
number of existing connections increases, it still
occupies a significant portion: even in case of 9
competing connections, the percentage of more
than 3 drops is 13.5%, 3 drops 10.6%, and 2
drops 31.1%. Hence, the total percentage of
multiple drops is 56.2% while 1 drop 37.4% and
RTO 7.5%. We find that the number of multiple
drops reduces by smaller amount as the number
of existing TCP connections increase. We can
also observe similar results in Fig. 2(b). The
percentage of multiple drops is smaller but still
significant. In case of 9 competing connections,
the percentage of over 3 drops is 4.6%, 3 drops
8.3%, and 2 drops 27.1%. The total percentage of
multiple drops is 40% while 1 drop 49.4% and
RTO 10.6%. Since the delayed ACK policy
makes TCP more conservative, the sender has
smaller number of multiple drops. The percentage
of multiple drops is over 55% without delayed
ACK and over 40% with delayed ACK in entire
simulations.

Multiple packet drops makes NewReno suffer
from performance degradation in its start-up
period because NewReno can recover only one
packet during one round trip time (RTT). It takes
d RTTs to recover all losses when d packets are
lost. If the sender can retransmit only lost packets
but can not send new packets during a lengthy
recovery period, it obviously leads to the
performance degradation, Also, if the sender does
not have as many packets in flight as cwnd when
the recovery process ends, it will send packets in
a burst. This packet burstiness may cause various
problems in the network.

We now simulate with other bottleneck
bandwidths ranging from 0.8Mbps to 3.2Mbps. In
this simulation experiments, we fix the number of
existing TCP connections to 5 while retaining the
other settings, The results are shown in Fig. 3.
The number of packet drops within a window
greatly increases as the bottleneck bandwidth gets
larger. The sender which has a larger fair share
of the bandwidth is more likely to go over its
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Fig. 3 Statistics of detected drop patterns with 5 TCP
connections.

fair share duc to the exponential increase of cwnd
in Slow-Start. So the percentage of multiple drops
increases and that of RTO decreases with larger
bandwidth irrespective of whether delayed ACK is
used. But this property does not stem from small
RED thresholds settings. In case of the queue
length of 100 packets, miny of 10 packets, maxm
of 30 packets and max, of 0.1, the percentage of
RTO, 1 drop, 2 drops, 3 drops and over 3 drops
is 0.8%, 16.7%, 19.6%, 14% and 48.9%,
respectively when the bottleneck bandwidth is
3.2Mbps and delayed the ACK is not used. These
results are similar to the values observed in the
previous simulation, which uses RED settings of
the queue length of 60 packets, miny of 5
packets, maxs of 15 packets and max, of 0.1.

When the network has more bandwidth and a
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Table .

Start-up transition performance of NewReno with and without PWD

NewReno withont PWD

NewReno with PWD

New packets sent during the k-th

N,=max (0, W—d),N W

Ni= max (0, W—d+k—1)

Fast Recovery

RTT-period
1 —1) —
Total new packets sent during Fast ow 5 WW—=1) — max (0,
Recoven L (w axw-a-1))
Packet burst size right after
=W 1

larger queue size, a TCP sender is likely to have
a larger window size. This will cause more
packet drops within a window and results in a
recovery period. Furthermore, many
applications use TCP for relatively small amount
of data transfer and create several TCP connect-
ions at a time. This suggests that good TCP
start-up performance will become increasingly
important.

The anaysis of transition dynamics is shown in

longer

[8]. They analyze the number of new packets sent
during recovery and the packet burst size after
recovery. Table I summarizes their analysis
results. W denote the sender window size at the
time when the sender sends a packet that will be
dropped first and 4 the number of packet drops
from a single window. Then A recovery period
can be partitioned into d RTT-periods to help us
understand how TCP NewReno behaves during
recovery. N, is the number of new packets sent
during the k-th RTT-period of recovery. The
k-th
RTT-period during Fast Recovery, that is, just
after the k-th partial ACK is received.

measurement is done at the end of the

IV. Simulations: Comparison of TCP
NewReno with/witout PWD

We run NewReno with and without PWD at
the sender and with and without delayed ACK at
the analysis results.
we measure the total

the receiver to verify
Throughout simulations,

number of new packets sent during recovery and
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the size of burstiness after the recovery ends. We
use the same topology in Fig. 1.

Fig. 4 shows the average total number of new
packets sent during recovery with different
bottleneck bandwidths. Since timeout makes TCP
exit the recovery and start new behaviors, we
exclude the cases where timeout occurs before or
during recovery. As the number of existing TCP
connections increases, both NewReno
without PWD send fewer new packets. Since the
sender has smaller fair share of the bottleneck
bandwidth with increasing number of TCP
connections, it detects a drop at a smaller
window size. Therefore, it sends a few mnew
packets during recovery.

NewReno with PWD sends more new packets
than NewReno without PWD for all cases and the
differences between them become larger with the
increase of the bottleneck bandwidth, The fair
share of a connection increases along with the
bottleneck bandwidth and makes the sender have
a relatively larger window size when detecting a
drop. But since the total number of new packets
of NewReno without PWD is limited by 2W from
Table 1., it only slightly increases with the
bottleneck bandwidth. But in case of NewReno
with PWD, since the total number of new packets
is related to the square of W, it increases faster.
Hence the differences between NewReno with and
without PWD get larger with the increase of the
bottleneck bandwidth,

Figs. 5 and 6 show the average size of packet

with and

burstiness and the size of packet burstiness
against the window size. We exclude the
243
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Fig. 4 Average total number of new packets sent during
recovery.

simulation runs in which any packet is dropped
during recovery. Packet drops during recovery
reduce the packet burst size, often down to O,
and cause another Fast Recovery just after the
recovery ends. In Fig. 5, we observe NewReno
without PWD sends larger packet bursts with
larger fair share of the bandwidth. The increase
of the fair share of the bandwidth can be caused
by decreasing the number of existing TCP
connections or  increasing the  bottleneck
bandwidth. When the delayed ACK policy is
used, NewReno without PWD has a smaller
window size and, thus has a smaller packet burst.
But NewReno with PWD sends one packet when
the recovery ends regardless of the fair share of
the bandwidth.

In Fig. 6, we show that the packet burst size
of NewReno without PWD is smaller than W,
and that of NewReno with PWD is exactly one.
Each measurement is done when the recovery
ends. In Fig 6(a), all crosses are below the
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oblique line representing burst size = ssthresh and
all dots indicate the burst size of one, So
NewReno without PWD has the packet burst
which is limited by W, and NewReno with PWD
has the packet burst size of one. When the
delayed ACK policy is used, the burst size of
NewReno with PWD is one or two and that of
NewReno without PWD is still limited by W in
Fig. 6(b). A two-packet burst of NewReno with
PWD occurs when the delayed ACK policy omits
one duplicate ACK before Fast Retransmit due to
its every other acknowledgement mechanism. The
omission of one duplicate ACK makes the sender
estimate one more packet drop and exit recovery
one RTT faster. Then since the sender has W - 2
packets in flight at that time, it sends the
two-packet burst.

The omission of one duplicate ACK also
reduces the total number of new packets by about
the number of drops, d. Since the sender
overestimates the drop by one, its new packets
sent in each RTT during recovery are reduced by
one. Hence the total number of new packets gets
smaller than that of our analysis.

The difference between the algorithms with and
without PWD is evident. NewReno with PWD
enhances the transition dynamics by sending more
new packets, resulting in the smaller burst size. It
increases the utilization of the recovery period by
sending more new packets and avoiding the
packet burst after recovery. But since it has more
aggressive properties, it may have a Thigher
probability of packet drops during recovery.
Throughout simulations, we observe that NewReno
without PWD has slightly lower drop probabilities
than NewReno with PWD, and that the delayed
ACK policy and the increase in the number of
existing TCP connections reduce the probability of
packet drops during recovery. Although NewReno
without PWD has lower probabilities of packet
drops than NewReno with PWD, the differences
are not significant. Rather, the difference was
observed where the delayed ACK policy is used.
The delayed ACK policy decreases the drop
probability by about 20%.
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Fig. 5 Average size of packet burstiness after recovery.

V. Conclusions

Since TCP NewReno algorithm with larger
bottleneck bandwidth can result in a lengthy
recovery period in its start-up transition, its
transition dynamics becomes more important. When
the sender detects a drop after the connection
establishment, it may have too large window size
due to the exponential window increase in
Slow-Start. So it can experience multiple packet
drops within a window and enter a lengthy
recovery petiod because recovering all drops takes
as many RTTs as the number of packet drops.
NewReno’s with and without PWD behave
differentially in terms of the transition dynamics
and show different properties. In this paper, we
analyzed NewReno’s with and without PWD
focusing on new packets sent during Fast Recovery,
and packet burstiness after Fast Recovery ends.
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Fig. 6 Packet burst size versus window size.

The simulation results bear out the analysis in
the number of new packets sent and the packet
burst size of NewReno with and without PWD.
The average numbers of them showed the
statistical feature of NewReno dynamics, and the
details showed their correlations with the window
size. Throughout simulations, we observed that
NewReno with PWD generally petforms better
than NewReno without PWD, The PWD algorithm
allows the sender to send an appropriate number
of packets in an RTT and avoid packet
burstiness. This property enhances the performance
of NewReno. during transition and allows the
sender to send more packets.

Enhanced TCP recovery algorithm based on the
simulation results is a future work. It should
improve  TCP

performance  without  being

excessively aggressive for fairness,
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