DEri=

=& 01-26-12C-7

34 =g kel 3

35541845 =F) "01-12 Vol.26 No.12C

wagEA Lol A5 B4
2y 2

A9 3 3 A

Speedup Analysis Model for High Speed Network based
Distributed Parallel Systems

Hwa-sung Kim* Regular Members

2 o

EabgedAe]e] S22 cort WA WY el FAE zhe dit Aok TAE 24 vEY LR didsedal
vhpel s o W AFEHES] 2] A $HE HR oj4sl] dAdel olvk B =R BagEA
28 oldl Ate A A BAE A Ui oz 33 e ke Al B2 Akl X
2agje] peE AT 2AFER Al A% el oud 81l s 24EAE Bk A 2y
< 571 9 oE Aad ERe) Hesleld 4 gk B AadelM 2AERE FE o wE 55%
A& A7) HeiAe alazs) HE AFEZ HYEA dA7L P PA dRolAel Sl efa=g] olfem
A FA ensl=rt 345} Fojop ik

ABSTRACT

The objective of Distributed Parallel Computing is to solve the computationally intensive problems, which have
several types of parallelism, on a suite of high performance and parallel machines in a manner that best utilizes
the capabilities of each machine. In this paper, we propose a computational model including the generalized graph
representation method of distributed parallel systems for speedup analysis, and analyze how the super-linear
speedup is achieved when scheduling of programs with diverse embedded parallelism modes onto a distributed
heterogeneous supercomputing network environment. The proposed representation method can also be applied to
simple homogeneous or heterogeneous systems whose components are heterogeneous only in terms of the
processor speed. In order to obtain the more speedup, the matching of the parallelism characteristics between

tasks and parallel machines should be carefully handled while minimizing the communication overhead.

I. Introduction

The heterogeneous systems are composed of
multiple dissimilar machines which corporate in
solving a problem. This paper focuses on a
special type of the heterogencous systems named
as Distributed Parallel Systems which consist of a
set of and vector

loosely coupled parallel

machines connected via high speed networks. The
objective of distributed parallel processing is to
solve computationally intensive problems that have
several types of parallelism, on a suite of high
performance and parallel machines in a manner
that best utilizes the capabilities of each machine
[1,2,3,4]. Recent advances in research on network
protocols and transmissions, and innovations in

* shedlEky AAlgabe U Ef]lT 5] Q7 hwkim@daisy. kwangwoon,ac.kr),

=T E D K01199-0914, Az} : 2001 949 142

B E d7e BodEa 200003 al ghedTa] e o A=Ak

218

www.dbpia.co.kr

=2 2% =Y J)uke AR A2 A% P #4 2

supercomputer design have made practical the
development of high-performance applications
whose processing is distributed over several
supercomputers. These applications make use of
the combined computational power of several
resources to increase their performance, and
exploit the heterogeneity of diverse architectures
and software systems by assigning selected tasks
to platforms which can best support them.

Actually, many large-scale scientific applications
have more than one type of embedded
parallelism, such as SIMD, MIMD, and vector
parallelism types, in its various code segments
[5,6]. Since it is unlikely that a single parallel
machine would execute the mixed-type of
computations with the maximum possible speedup,
a homogencous system can not achieve the
optimal speedup for these applications. Therefore,
it is more efficient to allocate the different
segments of a program with different types of
parallelism to various parallel machines that can
execute the assigned segments with the optimal
speedup. In this case, however, the network
overhead required for using the various machines
should not offset the advantage obtained by
assigning the segments of the program to the
machines with matching parallelism type.

Unlike homogeneous systems, a super-linear
speedup (more than a linear speedup) can be
achieved when using a distributed parallel system.
Donaldson et al. [4] defined the notions of
super-linear speedup and showed that the speedup
consists of heterogeneous and parallel components
in general terms without mentioning how the
heterogeneous component can be analyzed in
detail. The rest of this paper is organized as
follows: Section 2 formulates the scheduling
problem in distributed parallel systems. Section 3
analyzes the speedup when scheduling in
distributed paralleled systems. Finally, Section 4
presents the conclusion.

I. Formulation of the Problem

The distributed parallel system used in this

paper is a point-to-point network of multiple high
performance and parallel machines, each of which
has a specific parallelism type. The distributed
parallel system is represented by a Network
Graph as defined below.

Definition 1: A distributed parallel system H is
represented by an undirected network graph G =

<Vy, Ey=>, where Vy = My, i € {1, 2, ...,
m}, k € {1=SISD, 2=SIMD, 3=MIMD, 4=vecto
1, . . }}. For the convenience, the machine is

sometimes denoted by M; (dropping the integer k)
when the parallelism type of the machine is not
important in the discussion. Each machine M, in
Vy is associated with a tuple - [k, Rix] where k
is the parallelism type of machine M; and Ry is
the relative performance of machine M to the
fastest machine of type k among those in a
distributed parallel system (if machine M is the
fastest among the machines of parallelism type k,
then R;; = I otherwise Rz > I). Ey is a set of

[m_type. R] = [SIMD, 11 [8IMD, 1.5]

O

{MIMD, 11 [VEGTOR, 1]
(a) Netwark Graph

T, = [t_type, (Oy o’ Dmmp' D vecrond Ol

[8IMD,(1:8:4),10] [MIMD, (8:1:8),10}

[VECTOR, (4:8:1),10]

(n
I
(o)

[MIMD, (8:1:8),10] [VECTOR.(4:8:1).10]

(b) Task Graph

Fig. 1 Example of Network and Task Graph

219

www.dbpia.co.kr

- EAITHE] = 5-2] *01-12 Vol.26 No.12C

edges; Ey & Vy X Vg such that (M;, M;) € Ex
if M; is connected to M; through a direct link.
Each edge is associated with an integer
representing the communication cost that is
incurred when sending a unit of information
between the two machines, ie. this integer is an
estimate of the transfer rate and type conversion
overhead between the machines neglecting the
setup time. It is assumed that each machine in
the heterogeneous network may execute at most
one task at a time.

On the other hand, a parallel program consists
of a number of cooperating and communicating
tasks, each of which is characterized by a
parallelism type such as SISD, SIMD, MIMD, or
a vector type. The behavior of the program is
described by a Task Graph as defined below.

Definition 2: A program P is represented by a
directed, a cyclic task graph Gp = <Vp Ep>
where Vp = {tib 1 € {1, 2,. .. ,n}, k €
{1=SISD, 2=SIMD, 3=MIMD, 4=vector, . . }}
is a partition of P consisting of n tasks each of
which has a paralielism type % For the
convenience, the task is sometimes only denoted
by # (dropping the integer k). Each task fx in Vp
is associated with a tple - [k, (Disee Dijy 5 oo
Dy, O] where Dy is a coefficient that
represents the type mismatch penalty between task
tix and machine of type [(if %k = [, then Dy; =
1 otherwise Dy; >), L is the number of
available machine types in the distributed parallel
system under consideration. Qi is the optimal
execution time of #; on the its best matching
machine. Ep is a set of edges; Ep &€ Vp x Vp
such that (1, ;) € Ep if and only if # must
execute before #; due to data dependency andjor
communications between the two tasks. Each edge
is associated with an integer representing the
amount of information to be transferred between
two tasks. It is assumed that the execution of
tasks in the machines is non-preemtive, ie. once
the task begins exccution, it executes until its
completion.

After mapping the tasks of a program P to the

220

machines in a distributed parallel system H,
another task graph called an Allocated Task
Graph is obtained. In an allocated task graph,
each task is assigned a single value, which is its
execution time on a specific machine, and each
edge is assigned the actual communication cost
between two tasks. Let T{tix , M;) be the
execution time of task £+ on machine M;. We
can describe T(t;x , M;) by the product: Di, XRj
X O If the parallelism types of a task does not
correspond to that of a machine, the execution
time will be Dy, times the optimal execution time
Oir. On the other hand, a distributed parallel
system can be composed of machines with
various types and various performance even in
same type. Therefore, a task can be assigned to
the machine, which is not the optimal choice
even though their types match. R;; incorporates
the non-optimal machine choice although type
matching succeeds. Ry should be 1 if a parallel
machine M on which task #z is allocated js the
fastest machine among the machines with
parallelism type I Oy represents the optimal
mapping of task # of parallelism type k to the
best machine of type k.

Let C(t; M, &, My) be the actual
communication cost between a task t, allocated
to a machine M;; and any its parent task #
allocated to a machine M;- ;. The parallel execu-
tion of tasks using various machines accompanies
the communication overhead. Moreover in the
distributed parallel systems, more speedup can be
achieved by executing the task nodes which lie
on a sequential path of a task graph on different
machines. This will introduce the communication
overhead. The communication overhead is decided
by the amount of the data A; transferred
between any two tasks t and # , the transmission
rate H;;» between any two machines M; and M
7, and the conversion time of the data
representation and the synchronization time Fy-
between any two machines of type [and [.
After all the tasks that are mapped to the same
machine are totally ordered, the allocated task
graph is changed into a Scheduled Task Graph in

www.dbpia.co.kr

R/ 25 EY Zuke] PAbEHE A AR AT A B4 v

which the mapping of tasks to machines in the
network and any execution order between tasks
are fixed. In a scheduled task graph, additional
edges to represent the execution order between
tasks assigned to the same machine can be added
and the transitive edges are removed.

The scheduling problem can be described as
finding a mapping function Iof the tasks of a
program P into the machines of a distributed
parallel system H, ie. m:Vp — Vy , and the
execution order of all the tasks that arc mapped
to the same machine such that the schedule
length is minimized. The schedule length is equal
to the summation of execution times T(tix , Mj;)
and the communication costs C(t, M, -, My 1)
along the critical path in a scheduled task graph.
The critical path in a scheduled task graph is the
longest path between any starting task and any
ending task in the graph. In this case, the
communication time between two tasks executing
on the same machine is assumed to be zero time
unit. Especially in the distributed paralle! systems,
the parallelism type matching heavily affects the
schedule length.

. Speedup in Distributed Parallel
Systems

The speedup that can be achieved when
executing a parallel program P in a distributed
parallel system H can be described by Se such as

min{rp", 72T Ty

Sp = v M

where m is the number of distinct machines in
the network, Tp''is the execution time when the
whole program P is executed on single machine
M, and T# is the execution time of P in the
distributed parallel system H. (ie. the schedule).
IfSp= n, a linear specedup is obtained as a result
of nmning the program P in the distributed
parallel system. On the other hand, if Sr < n, a

sublinear speedup is obtained, while if Se > n, a

super-linear speedup is achieved. In the following,

. M, My M, . . M,
min{ T, T3 ,...,Tp "} is abbreviated as 74"

for the convenience, and described as follows:

T = min (T2 T . T

min Z Dkl xR il XO,-',C
= 1< j<m 1gien ¢ (2)

In Eq. (1), we can secc that more speedup is
expected as Tz gets bigger or T7 gets smaller.

T2'", as can be seen in Eq. (2), gets bigger
according that the parallelism types of tasks and
the machines in the distributed parallel system are
more diverse such that the execution of tasks on
the ill-matched machines incur more type
mismatching penalties. Since all the tasks of a
program P should be executed on single machine,
in this case, the parallelism types of the most
tasks of P will not be matched with that of the
machine. And these type mismatching tasks need
more execution time than the case in which those
task are run on the machine whose parallelism
types match with that of those tasks.

On the other hand, T# is defined as the sum
of the execution time 5S¢ of the tasks and sum

of the communication cost €y of the edges along
the critical path W of the scheduled task graph
derived from the general dependency task graph
as follows.

TH =5y" +Cy 3)
The definition of S¢"and Cv is given in the
following where T represents the mapping
function and ¥ is the critical path of the

scheduled task graph. In this case, the mapping of
the tasks need not to be optimal necessarily.

T(ti,k’Mj,l)

T Dy XRjyx0y
= M ;=Ty) 4)

221

www.dbpia.co.kr

324193 =52 "01-12 Vol.26 No.12C

h

THF —sTolysIv ~shlo)

ny Oy
SpN |5y

sgn Schedule

Length
-

(a) General Dependency Graph

*

1 (P + (SN -570)

Ty
¥
5 g N _§g g o
n
Se ¥ Schedule
Length

{eYTotallv Linear Devnendencv Granh

T —sfo s -8l

N _s;’O

ny oy
sV _[sT

s0o n Schedule
P Sy N Length

(b) Totally Parallel Dependency Graph

T

My ny
SN 18y

S\I; 4 Schedule

Length
o

idY Hanmaogenanne Mannine

Fig. 2 Schematic Representation of Components in Speedup

Ge= X
[4
M =Ily(t)
Mp=Ily(t;)

D H,; XFy XA,
1 eV

M =Myt)
= ey (5)

Clt, M1, M,)

On the other hand, when some of the tasks of
progtam P are not mapped optimally, sum of the
execution time of all the tasks of program P after

mapping is done is represented by Sp* . Also, the

sum of the execution time of all the tasks of
program P when their mapping is totally optimal,

is represented by SP°. The definition of S5 and

S$p°is given in the following.

I
S = ZT(:,.*,M)
15i%n
M=y)

= ZDk,t XR].I X0,
1=

4]
M =Ty)

Q)]

222

n
$p?= X Tty.Myl= Z0u
I1%i%n Isisn .
M =Ily(y) M =Iyit;) ™

Using the notation defined in Eq. (3)-(7), T
can be rewritten as follows:
g T (T3 —(Sp° +(Sp" = 53°)

T = ®
—(S;" —Sy* —Cy)

In Bgq. (8), S5r'-5+° represents the penalty
caused by non-optimal mapping, which depends
on the matching degree of the parallelism types
between the program tasks and the machines in
the system and the relative performance of the
machines as shown in Eq. (6), (7). This gets
smaller according that more tasks are allocated to
their type matching machines(if all the tasks are
mapped optimally, it reduces to zero). On the

other hand, (Sp°+(Sp* —57?)) is simply reduces

n M IT mn m, . .
to SpY.Tp " —(Sp° +(5p" -$z°)), which is the

www.dbpia.co.kr

=) A WEY 7]uke] iAo A b 24 2d

difference between Tp'"and Sp”, represents the
gain caused by the heterogeneous mapping.

Once all the tasks are mapped to the machines,
some of them except those allocated to the same
machine can be executed in parallel according to
the degree of parallelism inherent in program.

I1 n .
Sp¥ -S¢" -Cy represents such gain caused by

parallel execution. Cy is the amount of
communication overhead as in Eq. (5).

In summary, the speedup increases according to
three components as shown in Fig. 1: (a) more
gain caused by heterogeneous mapping, (b) more
gain by parallel execution; and (c) less overhead
by communication. And the gain caused by
heterogeneous mapping depends on three compo-
nents: degree of parallelism type mismatching
penalties between the program tasks and the
machines in the system, the optimality of
mapping which yields more parallelism type
matching, and the relative performance of the
machines,

If the tasks are totally parallel and the number
of the tasks is not larger than that of the
machines, the communication will not affect the

speedup. 77 is same as the execution time of
the task requiring the biggest time and is
calculated as follows where n is the total number
of the tasks:

max Tty M)
H IsisN
Tp' =M=nyn,)
Tplr (T —(spe +(spv ~sTo)

= —(SpN -Sg*) ©)

Compared to the totally parallel case, the
amount of speedup for totally linear tasks does
not depend on the degree of the parallelism
because it does not have the program modules

H
that can be executed concumently. Ir can be

written as:

Yy m,.M, JACt, M 1, M))]
1<ign
M =Tl)

ST (T3 —(SpO +(SpY =Spo)+Cw (10)

In the homogeneous case, there is no gain
obtained by the heterogeneous mapping because
the machines in a network do not show any
differences in terms of the parallelism type and
the machine performance. Therefore, the

Ty = (55° (55" ~S7°)) term should be zero.
The speedup in homogeneous case is only achieve
d by the gain in parallel execution at the expense
of the communication overhead.

V. Conclusion

In this paper, we have presented a computation
al model, which is the generalized graph represent
ation method of distributed parallel systems for
speedup analysis. The proposed representation met
hod includes the task graph and the network
graph. We also formulated the scheduling problem
in the distributed parallel systems using the prop
osed computational model. The various component
s of speedup were also analyzed when scheduling
a parallel program onto a distributed parallel
system, The super-lincar speedup can not be
obtained by simply increasing the number of the
similar machines because adding additional
inter-machine
communication and additional machines can not

machines also increases the

perform the optimal execution for the ill-matched
type code either. In distributed parallel system,
the super-linear speedup can be achieved by
assigning segments of a program with different
parallelism types to their best type matching
available machines. The speedup is improved by
larger degree of the parallelism in the program
and by larger average type mismatching penalty
in the network. On the contrary, the speedup is
degraded by larger communication overhead, The
communication overhead requited for using a
number of heterogeneous machines connected via
a network should not offset the advantage
obtained by assigning the segments of a program
to the machines with matching type of

223

www.dbpia.co.kr

FHEEAEHE =2R] 01-12 Vol.26 No.12C

parallelism, otherwise the super-linear speedup can

not be achieved.

(1]

2]

[3]

(4]

[5)

[6]

224

References
RF. Freund and D.S. Conwell, Super-
concurrency: “A form of distributed

heterogeneous supercomputing” Supercomputing
Review, Vol. 3, No.10, Oct. 1990, pp. 47-50
B. Narahari, A. Youssef and H.A Choi,
“Matching and Scheduling in a Generalized
Optimal Selection Theory” Proc. Workshop on
Heterogeneous Processing, April 1994, pp.3-8
Rajkumar Buyya, High performance Cluster
Computing: Architecture and Systems, Prentice
Hall 1999

V. Donaldson, F. Berman and R. Paturi,
“Program Speedup in a Heterogeneous Com-
puting” Journal of Parallel and Distributed
Computing, Vol.21, 1994, pp. 316-322

C.R. Mechoso, John D. Farrara and J.A. Spahr,
“Achieving Superlinear Speedup on a
IEEE
Parallel & Distributed Technology, summer
1994, pp. 57- 61

Hwa-Sung Kim, “Genetic & Simulated
Annealing based Scheduling in High Speed
Network based Distributed Parallel Systems”,
ICACT' 99, Feb. 1999, pp. 480-485

Heterogeneous Distributed Systems”

A & M(Hwa-sung Kim)
g 19813 29 : weefiste
e RN
19831 29 weEkw
AAppatai AL
199614 104 : Lehigh univ.
AR)

A2)4

198413 39~20001d 24 : ETRI A3 A7y

2000+ 39 ~A : el A A

<FRA ol AAd A TR, P90 24,
TP = AHY

www.dbpia.co.kr

