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 Ⅰ. INTRODUCTION

  Adaptive approaches have widely been used 

in active noise control applications in which t

he unwanted noise sound is adaptively synthe

size with the equal amplitude but opposite ph

ase, resulting in the control of the acoustic n

oise as shown in Fig. 1.

  In Fig. 1, the input microphone can be repl

aced by other non-acoustical sensors such as 

tachometers or accelerometers in which case 

the possibility of the speaker output feedback 

to the input microphone is removed [1]. For i

nstance, periodic noises to be cancelled can b

e generated using its fundamental sinusoid.  

The adaptive filter output derives the loudspe

aker in such a way that the acoustic noise a

nd the loudspeaker output can be summed to 

null at the error microphone.

  Although any adaptive algorithm can be us

ed in Fig. 1 is not appropriate. The reason is 

that the acoustic path between the filter outp

ut and summation point of the error signal is 

frequency sensitive, which acts to distort the 

phase and magnitude of the error signal.  In 

turn, the distortion of the phase and magnitu

de in the error path can degrade the converg

ence performance of the LMS algorithm.  As 

a result the convergence rate is lowered, the 

residual error is increased, and the algorithm 

can even become unstable.  For these reason

s, it is necessary to use the so-called Filtere

d-x LMS algorithm [2,3,4,5,6] for which the t

ransfer characteristics between the output and 

the error signal of the adaptive canceler must 

be estimated and the result be used in the ad

aptive algorithm.
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Fig. 1. Basic adaptive active noise 
controller configuration.  

  In many practical applications, the acoustic 

noise to be cancelled is generated by rotation 

machines and thus can be modeled as the su

m of a fundamental sinusoid and its harmoni

cs [2,3,7,11]. For example, fan noise is freque

ntly generated in the consumer electronic pro

ducts such as air conditioners, vacuum cleane

rs and so on. In this paper  we are concerne

d with cancellation of fan noise based on acti

ve noise control filtering. And we derive an a

daptive controller  structure  and  analyze  it

s convergence behavior when the acoustic noi

se can be modeled as the sum of a fundamen

tal sinusoid and its harmonics [2,3,7,8,11]. Th

e convergence analysis is focused on the effe

cts of parameter estimation inaccuracy on the 

performance.

 Following the introduction, we give a brief d

escription of the underlying system model in 

Section Ⅱ. The results of the convergence an

alysis and the simulation are presented in Se

ctions Ⅲ and Ⅳ, respectively. Finally we ma

ke a conclusion in Section Ⅴ.

W 

-1 -1 -1 

Orignal d 

Input 

x 

C 
-1 

New d 

y _

e 

C

e ~ 

η 

Fig. 2. Rearranged form of the controller 
under linear system condition.

Fig. 3. The diagram of adaptive active 
noise control system under study.

Ⅱ. SYSTEM MODEL

  Since the loud speaker-air-microphone pat

h of Fig. 1 is linear, one can easily get the 

equivalent system as shown in Fig. 2. When 

the noise consists of the multiple sinusoids o

nly, the acoustic and loudspeaker-acoustic- 

microphone paths can be described by the m

ultiple in-phase ( Ι ) and quadrature (Q) weig

hts as shown in the upper branch of Fig. 3. 

For the m-th sinusoidal noise the adaptive c

anceler structure also becomes to have two 

weights ωI,m(n)  and ωQ,m(n), with Ι  and Q 

inputs, xI,m(n)  and xQ,m(n), respectively. T

hus the output of the m-th canceler, ym(n), 

is expressed as

 ym(n) = ωI,m(n)xI,m(n) + wQ,m(n)xQ,m(n)        (1)

where

 

xI,m(n) = Amcos(ωmn+ϕm)≜AmcosΨm(n),

xQ,m(n) = Amsin(ωmn+ϕm)≜AmsinΨm(n),

 m : branch index = 1, 2, 3, ...,M,

 n : discrete time index,
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 A :  amplitude,

ωm : normalized frequency, 

Ψm : random phase.

Also, referring to the notation in Fig. 2, the e

rror signal e(n)  is represented by

 

e(n)= ∑
Μ

m=1
[cΙ,mẽΙ,m(n)+cQ,mẽQ,m(n) ] +η(n)

= -∑
M

m=1
[Am{cI,mcosΨm(n)+cQ,msinΨm(n)}

       {ωI,m(n)-ω
*
I,m}]

- ∑
M

m=1
[Am{cI,msinΨm(n)+cQ,mcosΨm(n)}

       {ωQ,m(n)-ω
*
Q,m}]+η(n)

     (2)

where

 ẽI(n)≜ẽ(n)= ∑
M

m=1
{dm(n)-ym(n)},

 ẽQ   : 90°phase-shifted version of ẽ I  

 η(n)  : zero-mean measurement noise.

  Assuming that ωI,m(n)  and ωQ,m(n)  are sl

owly time-varying as compared to xI,m(n)  a

nd xQ,m(n)  , the phase-shifted output is give

n from (1) by

 

yQ,m(n)= ∑
M

m=1
{ωI,m(n) xQ,m(n)}

= ∑
M

m=1
Am{ωI,m(n) sinΨm(n)-ωQ,m(n) cosΨm(n)}.     (3)

From (1), (2), and (3), one can obtain as LM

S weight update equation by minimizing 

e
2(n)  and using a gradient-descent method 

[4] as

 ωΙ,m(n+1) = ωΙ,m(n) +μ e(n) {cΙ,mxΙ,m(n)+cQ,mxQ,m(n)},

 ωQ,m(n+1)= ωQ,m(n)+μ e(n) {cΙ,mxQ,m(n)+cQ,mxΙ,m(n)},     (4)

where m=1,2,...,M and μ is a convergence co

nstant.

  It is noted that to implement the filtered-x 

LMS algorithm of (4), the values of c I  and 

cQ   must be estimated [10].  In the followin

g, we analyze the effects of replacing cI,m a

nd cQ,m in (4) with I,m and  Q,m  on the c

onvergence behavior of the canceler.

Ⅲ. CONVERGENCE ANALYSIS

A. The mean of weight error (Magnitude)

  To see how the adaptive algorithm derived 

in (4) converges for inaccurate I,m and Q,m, 

we first investigate the convergence of the 

expected values of the adaptive weights.  

From the underlying signal model (Fig. 2), 

Ε [ωI,m(n)]  and Ε [ωQ,m(n)]  are expected in 

the steady state to have ωI,m and ωQ,m, 

respectively.  To simplify the convergence 

equation, we may introduce two weight 

errors as

    υI,m(n) ≜ ωI,m(n) - ωI,m

and υQ,m(n) ≜ ωQ,m(n) - ωQ,m.                 (5)

Then, from (2), (5) and Fig. 2, we get

ẽI,m(n) = -υI,m(n)xI,m(n)-υQ,m(n)xQ,m(n),
ẽQ,m(n) = -υI,m(n)xQ,m(n)+υQ,m(n)xI,m(n).          (6)

Inserting (5) into (4), we have 

υI,m(n+1) =υI,m(n)+μme(n){ I,mxQ,m(n)+ Q,mxQ,m(n)},  

υQ,m(n+1)=υQ,m(n)+μme(n){ I,mxQ,m(n)+ Q,mxI,m(n)}.       (7)

Rearranging (7) with (2) and (6), taking 

expectation both sides of the resultant two 

weight error equations, we can get the 

following convergence equation based on the 

independent assumption on the underlying 

signals; xm(n), η(n), vI,m  and vQ,m.  That is,

( )E [υI,m(n+1)]
E [υQ,m(n+1)] 

 = ( )αm βm
-βm αm 

 ( )E [υ I,m(n+1)]
E [υQ,m(n+1)]      (8)

where

 αm ≜ 1-
1
2
μmA

2
m (cI,m I,m+cQ,m Q,m )                

 βm ≜ 
1
2
μmA

2
m ( I,m cQ,m-cI,m Q,m ).

Here, defining gain and phase response 

parameters as

    gm ≜ c
2
I,m+c

2
Q,m,

    ĝm ≜ 
2
I,m+

2
Q,m,

    θc,m ≜ tan
-1(
cQ,m
cI,m

),

and θc,m ≜ tan
-1(

ĉQ,m

ĉI,m
).

 αm  and βm  in (8) can alternatively be 

expressed as
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 αm ≜ 1-
1
2
μmA

2
mgmĝmcos△θc,m,                    

 βm ≜ 
1
2
μmA

2
mgmĝmcos△θc,m                   (9)

where    △θc,m ≜ θc,m- θ̂c,m,

  Also, using similarity transformation we 

can convert (8) into the transformed domain 

as

 ( )E [ύI,m(n+1)]
E [ύQ,m(n+1)]

=( )1-λI,m 0
0 1-λQ,m ( )E [ύI,m(n+1)]

E [ύQ,m(n+1)]    (10)

where 

 λ i,m=
1
2
μmA

2
mgmḡm{ cos△θc,m± j sin△θc,m }  i = I,Q.

  It should be noted from (10) that since 

λi,m 's are complex values, so are the 

transformed weight errors.  Therefore, we 

consider the convergence of the magnitude of 

the transformed error as

ρi,m(n+1) = |1-λi,m| ρi,m(n), i = I,Q            (11)

where  ρ i,m(n) ≜ |E[ύ I,m(n)]|.

  We can see from (11) that the magnitude 

converges exponentially to zero 

(i.e.,E [ωI,m(n)]  to ω
*
i,m )  under the 

following condition

 |1-λ i,m| < 1    ∀i    i= I,Q                (12)

Squaring both sides of (12) yields

 1 - μmA
2
mgmĝm cos△θc,m + 

1
4
μ
2
mA

2
mg

2
mĝm <  1

 0 <  μm <  
4cos△θ c,m

A2mgmḡm
  or 

0 <  κ f,m <  1     (13)

where    κ f,m  ≙ 
μmA

2
mgmĝm

4 cos△θc,m
.

  The time constant of the exponential 

convergence is derived from the following [4]:

 e
-1/τi,m 

 ≅ 1-
1
τi,m

       = | 1 -λi,m |   for larg τi,m,  i = I,Q   (14)

From (11) and (14) we get

 
τ i,m = 

1

1- 1-μmA
2
mgmĝm cos△θc,m+

1
4
μ2mA

2
mg
2
mĝ
2
m        

    =
1

1- 1-4κf,m (1-κf,m ) cos
2△θc,m             (15)

where i = I and Q .

B. The sum of the squared weight errors  

  Next we investigate the convergence of the 

mean-square-error (MSE), Ε[e2(n)]. Using 

(2), (6) and (8) we can express the MSE as

 Ε[e2(n)] = ∑
M

m=1
e2m(n)+σ

2
η

        =
1
2 ∑

M

m=1
A2mg

2
mem(n) + σ

2
η           (16)

where    
σ2η ≙ Ε[η

2(n)],

ξm(n) ≙ Ε[v
2
I,m(n)] + Ε[v

2
Q,m(n)].

  It is noted from (16) that the convergence 

study for the MSE is equivalent to that for 

the sum of the mean-squared weight errors.  

Inserting (5), (2) and (6) into (4), squaring 

and taking expectation of both sides of the 

result yields

 ξm(n+1) = γmξm(n) + δm                  (17)

where

 

γm ≙ 1 -μmA
2
mgmĝm cos△θc,m

+
1
16
μ2mA

4
mg

2
mĝ
2
m [9-cos( 2△θc,m )],          

 δm ≙ μ
2
mA

2
mg

2
mĝ

2
m σ
2
η.

Thus, when |  γ | <  1,  (17) has the solution  

 ξm(n)= γ
n
m ξm(0) +

1-γ
n
m

1-γm
δm.               (18)

   Consequently, the convergence condition of 

the sum of the squared weight errors can be 

obtained from(18). 

 ∣ γm∣ <  1.                            (19)

Solving (19) yields

   0 <  μm <
16 cos△θ c,m

A2m gm ĝm ( 9- cos2△θ c,m )  

or 0 <  κm, s  <  1  .                        (20)

where   κm, s≜μmA
2
m

gm ĝm ( 9- cos2△θc,m )

16 cos△θc .

  The time constant of the exponential 

convergence is derived from (18) and (14).    

 τm, s =
1

μmA
2
mgm ĝm {cos△θc,m-ε }                

     =
9-cos2△θc,m

16κm,s ( 1-κm,s ) cos
2△θc,m             (21)

where                             

 ε ≙ 
1
16
μmA

2
mgm ĝm (9- cos2△θc,m).

  We can obtain the steady-state value as

 ξm(∞) = δm / (1-γm )

       =
μm ĝm σ

2
η

gm{cos△θc,m-ε}
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       =
16 κm,sσ

2
η

A2mg
2
m (1-κm,s) {9-cos2△θc,m}       (22)

  

The results of the convergence analysis are 

summarized in Table Ⅰ.

Table Ⅰ The results of the convergence 
analysis of the Filtered-x LMS algorithm.

mean of weight error

(Magnitude)

χm, f≙
μm A

2
mgmĝm

4cos△θc,m

Summed variance of weight errors

χm, s≙
μm A

2
mgmĝm[9-cos(2△θc)]

16cos△θc,m

Stability

condition

0<μm<
4cos△θ c,m

A
2
mgmĝm

or   0 <  χm, f <  1

0<μm<
16cos△θ c,m

A
2
mgmĝm[9-cos(2△θ c,m)]

or 0 <  χm, s <  1

Time

constant

1

1- 1-4χm,f(1-χm,f)cos
2△c,m

9-cos(2△θc,m)

16χm,s(1-χm,s)cos
2△θc,m

Steady-state

 value
    0

16χm, s σ
2
η

A
2
m g

2
m (1-χm, s)[9-cos (2△θ c,m)]

  

  Fig. 4 show the time constant curves 

obtained from the analysis of the mean of 

the weight error magnitude and the summed 

variance of weight errors when the phase 

errors |△θc,m|  are (1) 0°, (2) 45°, (3) 60°, and 

(4)75°. We can see that the convergence 

speed is the fastest for κm = 0.5 in case of 

same |△θc,m|.

  

    (a) Mean of the weight error magnitude.

 

(b) Summed variance of the weight.

Fig. 4. Time constant.     

(1) ∣△θc,m∣=0
∘,  (2) ∣△θc,m∣=45

∘, 

(3) ∣△θc,m∣=60
∘, (4) ∣△θc,m∣=75

∘.

Ⅳ. SIMULATION RESULTS

  Results of computer simulation are 

presented in this section along with those of 

the theoretical analysis of the Filtered-x LMS  

algorithm in section Ⅲ.  For convenience, we 

consider a single sinusoid case.  The input 

signal x(n)  and desired signal d(n) are 

given as

 x(n)= 2 { cos( 240πn2000
+ϕ1) + cos( 480πn2000

+ϕ2) },             

 
d(n)= ∑

2

m=1
{ω
*
I,mxI,m(n) +ω

*
Q,mxQ,m(n) }

= 0.6xI,1(n) -0.1xQ,1(n) +0.3xI,1(n) -0.3xQ,1(n).
     (23)

where the sinusoidal frequencies of the 

sinusoid and sampling were 120 Hz, 240Hz 

and 2KHz, respectively.  The variance of the 

zero-mean measurement noise was 0.001.  

The initial weight values were all zero.  The 

simulation results were obtained by ensemble 

averaging 1000 independent runs.  The 

convergence constant μ was 0.002.
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Fig. 5. Learning curves of the summed 
variance of the weight errors.

(1) ∣△θc,m∣=0
∘,  (2) ∣△θc,m∣=45

∘, 

(3) ∣△θc,m∣=60
∘, (4) ∣△θc,m∣=75

∘.

   

   Fig. 5 show the learning curves obtained 

from the analysis and simulation of the 

summed variance of weight errors when the 

phase errors |△θc,m|  are (1) 0°, (2) 45°, (3) 

60°, and (4)75°. It can be seen from the 

figure that the theoretical results for the 

summed variance behavior agree well with 

the simulation result.  We can also see that  

the convergence speed is the fastest for 

|△θc,m | = 0°.

Ⅴ. CONCLUSIONS

  We can easily see from Table I that the ef

fects of parameter estimation inaccuracy on t

he convergence behavior of the filtered-x LM

S algorithm are characterized by two distinct 

components : Phase estimation error △θc  an

d estimated magnitude ĝ. In particular, 

|△θ c |  should be less than 90°for convergen

ce.  It is, however, noted that once κf  or κ s  

is selected, the convergence turns out to be d

etermined only by △θc.  The convergence s

peed is the fastest for κ  = 1/2 regardless of 

△θc.   When △θc  = 0 and ĝ = g the conv

ergence result becomes the same as the LMS 

case.  In conclusion, the convergence of the 

Filtered-x LMS algorithm is shown to be str

ongly affected by the accuracy of the phase r

esponse estimate.
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