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ABSTRACT

In this paper, we propose a new AQM algorithm, Hybrid RED (HRED). It combines the more effective
elements of recent algorithms with a RED core. It decouples queue length management from adaptation to
dynamic load in order to achieve high network utilization with low loss and delay in a simple and scalable
manner. We analyze it to prove local stability and provide a simple configuration for quick response time.
Throughout simulation, we demonstrate that HRED outperforms earlier AQM algorithms in stability and response

time with straightforward selection of parameters for both steady load and changes in load.

1. Introduction those capability, the algorithm may remain

unused.

AQM algorithms help end hosts make decisions
about transmission rates by providing congestion
information based on characteristics of a router’s
queue. The advantages of such feedback seem
obvious, and the IETF recommends the use of
AQM to reduce loss rate, to support low-delay
interactive services, and to avoid TCP lock-out
behavior''. A successful AQM algorithm must
provide simple, intuitive means of configuring
parameters to achieve stable operation under
steady load and rapid adaptation to changes in
load. In addition, an algorithm should be intuitive
and adequate for achieving desired goals. Without

Numerous algorithms, such as RED", Adaptive
RED", Blue", the Adaptive  Virtual Queue
(AVQ)"”, and the PI controller'®, are proposed for
AQM, but they have still difficulties in
configuring for stable operation in dynamic
networking environments, which prevented them
from replacing the traditional tail-drop mechanism
in the Internet.

In this paper, we introduce and evaluate a new
AQM algorithm that combines a RED design with
aspects of other AQM algorithms, such as Blue
and the Proportional controller'®. For this reason,
we call it Hybrid RED, or HRED. HRED
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provides  intuitive  configurations and  rapid
response as well as stable operation.

The remainder of the paper is organized as
follows. We begin with an overview of previous
work in Section II. In Section III, we provide
design principles and a simple analysis of HRED.
After evaluating HRED and other AQM
algorithms through simulation in Section IV, we
conclude in Section V.

II. Previous Work

RED" uses two operations to calculate drop
probability: it first computes an average queue
length 7 using an Exponential Weighted Moving
Average (EWMA) with weight w, then

calculates drop probability p from 7/ using a
linear mapping function, which has three
parameters:  min ,, max,, and  p,,. Average

queue  lengths in  the  operating  range

[min 4, max,) are linearly mapped to drop
probabilities in the range [0, p,.,.]. Below min ,,
packets are not dropped, and above max,, they
are always dropped. The simplest modification of
RED to improve stability is to use the gentle_
option'”’, which eliminates the discontinuity at
max ;, and makes the drop probability function
piecewise linear by mapping the interval between
the maximum threshold and the buffer size,
[max 4, Q .., linearly to the range [p,..,1].

Rather than expanding the linear range,
Adaptive RED (ARED) adjusts p,.". It
increases p,, when [ gets over max, and
decreases when 7/ gets below min,. ARED
attempts to decouple queue length from drop
probability to adapt to a range of network
scenarios, but can not completely remove
instability. In our simulations, we also found it
hard to control, or even to predict, the average
queue length in steady load.

The developers of ARED also proposed a new
AQM algorithm called Blue'. Blue neither

averages queue length nor uses thresholds. Instead,

independent of queue length, and adjusts the
probability in response to buffer overflow
(tail-drop) and underflow (empty) events. Blue can
be implemented very simply, and requires very
little processing power. However, it is difficult to
configure for a range of environments.

The PI controller applies control theory to
obtain  stability'”. Based on analysis with
linearized models of TCP and RED", the PI
controller is proven to be locally stable. It
maintains local stability by guaranteeing gain and
phase margins of the system function. However,
the stability is restricted by both maximum
number of connections and maximum round-trip
time. The recommended settings can increase
phase margins as link capacity increases, resulting
in slow response time.

AVQ takes an approach similar to that of the
PI controller to achieve local stabilitym, It
maintains a virtual queue with capacity smaller
than the actual capacity. On every packet arrival,
AVQ updates the virtual capacity and drops the
received packet if the virtual queue overflows.
Unlike RED, it regulates utilization rather than
queue length, and thus has difficulty obtaining a
desired queue length and in controlling queuing
delay.

Il. Design and Configuration

The purpose of AQM algorithms is to maintain
high link utilization with low loss rate and

queuing  delay'"".

Stable operation and quick
response to changes in load are also desirable.
This section outlines the HRED algorithm and
explains its design in terms of these attributes.
We begin with a general discussion of how AQM
algorithms provide control of queuing delay, then
provide a simple analysis of local stability, i.e.,
stability under steady load, showing that HRED
improves upon previous algorithms. We finish the
section with an analysis of response time.

The first design criteria of AQM is its ability
to control queuing delay, which is measured by

COpW@hta(@) mginNupiMediaa@g_, Ltdhe expected delay and the expected variance. To
www.dbpia.co.kr 1255



24185 4] °02-12 Vol.27 No.I2A

provide independent control of both measures, an
algorithm requires at least two parameters. The PI
controller, for example, has only a single
parameter, g¢,,, for the desired queue length. This
parameter allows straightforward control of the
average delay, but the variance in delay depends
on parameters that offer no intuitive relationship
to delay. As delay is proportional to queue
length, RED and its variants bound delay via the
queue  thresholds. HRED uses the same
dual-threshold model to control the queuing delay
in steady load. As with RED, delay can vary
within the operating range.

One of the most difficult problems of AQM is
stability. In this paper, we restrict our interests on
local stability due to lack of space. Since the
network system as a whole ---including the AQM
algorithm, cooperative end-hosts, and end-to-end
delay-—- forms a closed feedback system™
algorithmic ~stability can be analyzed through
appropriate modeling of each element.

For a bottleneck link shared by N TCP
connections with a round-trip propagation delay of
RTT, the expected window size of each

connection is proportional to 71:, where 5 is
b

the expected steady-state drop probabi]ity“ol. I

n
steady load, the queue holds the sum of all
connections’ windows minus the data in flight in
the network. Thus, the expected average queue

size / can be written in terms of  as
7= NT‘S — CXRTT, (1)
P

where K is a constant of proportionality (i.e.,
K/\/__E is the expected window size)l).

For an AQM algorithm to be locally stable, a
deviation from the expected average queue length
at time ¢ must not lead to a larger deviation at a
later time. More formally, let /, vary from 7,

by some small amount &/, with

1) (1) presents Congestion Avoidance  algorithm

linearized near an operating point. The linearization

Copyright (@) 2003‘NuriMedia Co., Ltd.

L,="1,+41. )

The deviation in average queue length increases
the drop probability, which in turn (after a delay)
reduces expected window sizes and the expected
average queue length. For RED, the impact of the
deviation in average queue length is governed by
the mapping function

l— min y,

D= D max maz 5 — min g ° (3)
Substituting (2) into (3) at time ¢, we obtain
pll) = pt—Lmx 5
i _’ max ;,— min y, 4)
= p+6p.

After some delay ¢ (several RTTs in practice),
the window sizes reflect the change in .
Substituting (4) into (1) at ¢+ 7 and expanding
the radical linearly around p, (§p is small), we
find

_ —__L+CxRTT Dimar
e = T i, )
= ,+S(7) oL

The coefficient S(7) in (5) denotes the system
gain, and indicates how a deviation in RED’s
average queue length at time ¢ affects the
expected average queue length at time ¢+ 7 If
S(7)<1, the system is locally stable. If S(7)>1,
the system MAY be unstable. The ambiguity in
the latter statement arises because  S(/,)
represents a conservative approximation of system
dynamics.

HRED meets the stability criterion by introdu-
cing another parameter, p,,. It specifies the drop
probability when /= min ,. Then, the mapping

function (3) becomes

!— min
max y,— min y,

D= (D max— D i) s (6)

and [S( )| is given by

1256 www.dbpia.co.kr
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. — I+ CXRTT
IS¢ 29 Max g — min g, °

D max — D min (7)

Equation (7) allows the system gain to be
controlled through p,..—#,:. to ensure that the
system is locally stable. For local stability
independent of the current drop probability,
HRED maintains  [S(/)I<1 by setting p,..

according to the equation

b min

max ,, (max j,— min ). (8)

B mer— B =
The parameter x depends on queue parameters
and the network capacity.

As well as stability, AQM should have quick
response time according to change of traffic
loads. Since HRED adjusts p,,, and p,, as
shown in Fig. 1, it may exhibit unstable behavior
if it is overly aggressive in adjustments to the
probability parameters. Conservative adjustments,
on the other hand, can lead to lack of
responsiveness to change. Stability and response
time thus offer tradeoff in terms of the
adjustment algorithm parameters, ¢ and 2.

Suppose a sudden increase of connections from
N to (1+gN. The desired drop probability '

to maintain 4 can be given by from (1),

P=0+2"p. 9)

As an RTT is required before a change of p
affects incoming traffic, we configure ¢« and 8
for HRED to have the drop probability of
(1+g)° after one RTT.

Considering that the drop probability increases
by (1+2)°p—p=g(2+ 2)p, we set
a=K,- pl¢q—max ,;), where K, is a constant, so
that  HRED has response time independent of
current status and change in traffic load. We then
estimate the increment on a packet arrival from
the algorithm in Fig. 1. Given an increase of N
to  (1+gN, the total incoming traffic rate
increases from (1—pC to (1—pC(1+g) and, in

if (1> maxy )
Pmin = Pmin + @
if (1> miny )
Pmin = Pmin - ﬁ
Pmax = Pmin + 1K pmi/maxy (maxy - miny,)

Fig. 1 Adjustment algorithm of HRED.

(1—p)gCxRTT, which
(¢—max ). As drop probability is updated on

corresponds to?)

every packet arrival, the increment of drop
probability must satisfy

K p(1—p)gCxRTTI+gCx RTT
S(1—p)

(10)

where S is the average packet size, and the
fractional factor in the equation gives the average
number of arrivals during an R77T, and the right
hand side g(2+ g)p is the targeted increment of
drop  probability  during  an RTT, e,

' — p=(1+g"p—p. From (10), we then obtain

_ S 2+g
Ka‘ (C“'RTT)‘J 1+g° (11)

28

—25 ¢
(CxRTT? ™

which can be approximated by

gL<1.

Similarly, B can  be replaced  with

28
(CxRTT)?*"

K g% p(min ,,—q) and K ;=

A~}
3
g

Drop Probability
3

iy, max,, Q
Queue length

max

Fig. 2 Drop Probability of HRED.

2) We assume a sudden increase in the traffic rate. If
a gradual increase, such as that of the TCP fluid
flow model, is assumed, the added queue length

anﬁthiegﬁlfufé3"géh08§af\l OAMETIACY.. Ltd, shoutd be halved
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The parameters K, and K, need mnot be

equal. As response time is more of a concern

for decreases in traffic load than is stability, K,

can be larger to improve response time. For
example, with @ ,,.=2 max ;=4 miny,, Kj can
be twice as much as K; as

Q ypax — MAX ;=2 MIN -

Additionally, HRED removes EWMA of RED
and extends linear range in mapping function for
stability and quick response in changes of traffic
load. Since these are related to global stability,
we omit detailed explanation. Fig. 2 shows the

modified mapping function of HRED.

IV. Simulation Comparison

ns-2 {1

This section uses the simulator to
compare HRED with RED, PI, and AVQ. We
include neither ARED nor Blue because they do
not try to keep constant queue length.

We first explore queuing delay by measuring
queue length and standard deviation in steady
load. The results corroborate the analytic claims
of the previous section, demonstrating that RED
fails to impose adequate controls on queuing
delay. We next compare the dynamic behavior of
RED, HRED and PI through an investigation of
response time to changes in load, ie., the time
required to reach steady state after the traffic load
changes. We find that HRED provides faster and
more predictable response times than PI with
moderate and heavy traffic loads. AVQ is not

included in this comparison due to difficulty in

Table 1. Configuration of AQM for Simulation

RED miny=125KB, max;=250KB, w,=0.002
HRED ming=125KB, max;=250KB, w,=1
PIC q-~187KB, Sampling 160Hz
Table 2. Parameter Values of AQM for Simluation
RED Pmax=0.02, gentle_ option on
HRED K.=1.3563x10", K;=2.7126x10", k=2
PIC a=1.1379x10-8, b=1.1349x10-8
4 azOp15.. 9% 70,
Copyfight
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The
from its characteristic trying to keep queue length

measuring response time. difficulty comes
as small as possible and lack of control of queue
length at a fixed level.

the

simulations are based on a dumbbell topology in

Except  where  otherwise  specified,
which all connections traverse a single bottleneck
link with capacity 32 Mbps. The bottleneck link
queue operates in byte mode. We assign a
random round-trip time between 160 and 240 ms
to each connection (uniform distribution), which
includes everything except queuing delay at the
bottleneck. One set of random RTT’s is used in
all experiments. Packets connections
500 bytes in AQMs

configured as recommended”®""? with 500 KB

on all

average length. are

queue size. The configurations in simulation are
shown in Table 1 and 2.

We
standard deviation over a period of 200 seconds.

monitored average queue length and

The load consisted of a combination of greedy
FTP connections and HTTP with
100-1000 FTPs and 300-3000 HTTPs for each
measurement. The results in different traffic loads

sessions,

appear in Fig. 3 and 4. The horizontal axis in
graph the FTP
connections; the number of HTTP connections is

each reports number  of
proportional.

The experiments demonstrate that only HRED
manages to provide stable, predictable queuing
delay and full utilization of the bottleneck link.
RED, PI, and AVQ fail in

environments through oscillatory behavior, which

some network

is observed by large deviation over 30 in Fig. 3

(a) Average Queue Length  (b) Standard Deviation

Fig. 3 AQM algorithms in steady state with moderate
traffic loads.
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Fig. 4 AQM algorithms in steady state with heavy traffic
loads.

For behaviors of AQMs in dynamic traffic
loads, we observe queue length of them. We
begin with 100 FTP connections and 300 HTTP
sessions, doubled every 50 second after initial 150
second. The results are shown in Fig. 5. The two
horizontal lines represent wmin, and max, for
RED and HRED. They also appear in PI and
AVQ for comparison purpose. RED loses stability
in some ranges of network environment, especially
between 200 and 250 second. HRED has quick
response time while maintaining stability in all
traffic changes. PI gets slower and fails to
respond quickly in heavy traffic loads after 250
second. AVQ has an interesting property of
keeping the queue length as small as possible
without hurting the utilization. Though it performs
well in heavy traffic loads, it shows oscillatory
behavior in light traffic loads because it does not
consider queue deviation. Hence, RED, PI, and
AVQ do not meet our criteria of stability and
fast response time for dynamic traffic load.

We next compare HRED with RED and PI
focusing on response time to changes of traffic

load. We measure the time when the queue
length gets between %mz’n » and %ma:( s for

10 seconds after traffic load changes. Due to
difficulty in  measuring, we leave out a
comparison with AVQ. The basic simulation
environment is the same.

We explored the differences of three algorithms

for several network environments as before. In the

g
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Fig. 5 Queue length of AQM schemes in dynamic traffic
loads.

started with 100 FTP connections and 300 HTTP
sessions and increased by a factor of x, which is
horizontal axis. In case of heavy loads, we started
simulation with 400 FTP connections and 1200
HTTP sessions. We report two response times:
the time for traffic increasing from the initial
load, and the time for traffic returning from the
increased load to the initial load.

The results of the experiment demonstrate that
HRED provides good responsivity to changes in
traffic load in Fig. 6 and 7. The PI controller is
much slower than HRED to respond to load

variations especially in heavy traffic loads.

Since it is essential for a successful AQM
algorithms to achieve both stability and fast

Cgﬁg}ﬁ@htﬂfcylf?boagl‘i\lﬁrwﬁérafal%’ Ltggsponse time in any traffic loads, HRED is the

www.dbpia.co.kr 1259



FHEAI 58] 7] "02-12 Vol.27 No.I2A

(a) Increase (b) Decrease

Fig. 6 Response time in moderate traffic loads.

(a) Increase (b) Decrease

Fig. 7 Response time in heavy traffic loads.

only alternative that can replace the traditional
tail-drop mechanism in the Internet, the traffic
characteristics of which is very dynamic.

V. Conclusions

We have presented the design and analysis of
Hybrid RED, an active queue management
algorithm that blends aspects of recent AQM
efforts into a RED core, providing the best of
both. HRED employs a linear mapping from
instantaneous queue length to drop probability
across all values of queue length, decoupling
queue length management from adaptation to
dynamic load. HRED handles changes in load
with a simple control algorithm that manages the
slope of the drop probability mapping function. It
also provides simple means of configuration for
achieving stable operation under both steady and
dynamic traffic loads.

The main advantages of HRED are its stable
operation and fast response time in a wide range
of network environments. While RED and AVQ
lose stability in moderate and light load, and PI
has very slow response time especially in heavy

load, HRED makes stable operations without

1260

ensured by simulations in various steady and
dynamic traffic loads. For future work, we plan
to implement and evaluater HRED on a real
network.
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