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ABSTRACT

The authors investigate the convergence speed problem of nonlinear adaptive equalization. Convergence 

constraints and time constant of radial basis function network using stochastic gradient (RBF-SG) algorithm is 

analyzed and a method of making time constant independent of hidden-node output power by using 

sample-by-sample node output power estimation is derived. The method for estimating the node power is to use 

a single-pole low-pass filter. It is shown by simulation that the proposed algorithm gives faster convergence and 

lower minimum MSE than the RBF-SG algorithm.  
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Ⅰ. Introduction

  For several years, neural networks have been stud-

ied as a form of nonlinear equalizer[1-7]. These studies 

have shown that these nonlinear neural network 

equalizers are much superior to linear equalizers 

for channels that suffer from nonlinear dis-

tortion
[1]. However neural equalizers require much 

longer training periods than linear equalizers, and 

they are sensitive to the choice of network pa-

rameters
[8]. RBF equalizers[5-8] have a simple 

structure and offer some advantages over both lin-

ear and multiplayer perceptron (MLP) equalizers. 

The architecture of RBF network (RBFN) con-

sistsof input, hidden, and output layers. RBF 

equalizers generally need more hidden nodes and 

training samples to achieve the performance com-

parable to that of a well trained MLP. However, 

learning in the RBF is usually much faster than 

in a MLP. The basis functions in the hidden lay-

er of RBF produce a localized response to the in-

put and typically uses hidden layer nodes with 

Gaussian response functions and the outputs of 

thehidden node lie between 0 and 1. 

Generalization to network with multiple outputs is 

straightforward and done by assigning M con-

nection weights for each output nodes. 

  The performance of RBF network is highly de-

pendent on the choice ofcenters and widths in ba-

sis function. For a minimum number of nodes, 

the selected centers should well represent the 

training data for acceptable classification. Most of 

the training algorithms for RBF network have 

been divided into the two stages of processing. 

Firstly, a clustering method such as the K-means 

or fuzzy c-means algorithm is applied to the input 

training samples in order to determine the centers 

for hidden layer nodes
[9]. After the centers are 

fixed, the widths are determined in a way that re-

flects the distribution of the centers and input 

samples. Once the centers and widths are fixed, 

the weights between hidden and output layer are 

trained usually by least-mean-squared (LMS) 

algorithm. This two-stage method provides some 

useful solutions in pattern classification problems. 

However, since the centers and widths are fixed 

after they are chosen and only the weights are 

adapted for supervised learning, this method often 

results in not satisfying performance when input 

data are not particularly clustered. Also these two 
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stage block-processing algorithms are generally 

computation-intensive and not suitable for equal-

ization applications where fast on-line processing 

is needed. In [10], a simple learning algorithm 

that simultaneously adapts allthe network parame-

ters- centers, widths, and weights was proposed. 

The algorithm applies stochastic-gradient (SG) 

method to the RBF parameter adaptation. This 

RBF- stochastic-gradient (RBF-SG) algorithm has 

proved superior to many of the existing algo-

rithms, with less computational requirementsin 

nonlinear channel equalization applications
[11]. 

  The learning speed of the stochastic-gradient 

descent method is dependent on signal variance. 

If we use node output variance in adapting the 

RBF network parameters we can acquire faster 

convergence. In this paper we introduce a sam-

ple-by-sample node-power estimation method and 

propose a new algorithm which combines the 

node-power estimation method with the RBF-SG 

algorithm. Several nonlinear channel models have 

been simulated to show that the proposed algo-

rithm performs better than the RBF-SG equalizer 

algorithm. 

  The organization of this paper is as follows. 

The RBF-SG algorithm is reviewed in Section II. 

In Section III, the proposed RBF-SG algorithm 

using node-power estimation is presented. 

Simulation results are presented in Section IV, 

and Conclusions are given in Section V.

Ⅱ. RBF-SG Algorithm

  The RBF-SG algorithm adapts all the free pa-

rameters of the network using gradient descent of 

the instantaneous output error power. Let input 

vector ),1(),([)( −= nxnxx n TMnx )]1(..., +−  and )(nd  

denote desired output. Let )(ny  denote the RBF 

output for input )(nx  and let the error be denoted 

by )()()( nnn yde −= , all at the training time n . For 

a network parameter φ , the RBF-SG algorithm 

adapts its value )(nφ  at time n  according to
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  where θµ is the convergence parameter. Among 

localized basis functions, the Gaussian is the most 

popular choice for RBF-SG. The output of 

RBF-SG with M Gaussian basis functions is 
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  where
)(n

jc is the center associated with hidden 

node j at time n  and 
)(n

jσ  is the width parameter 

at time n , which represent a measure of the 

spread of data. 
)(n

jw  is the weight from hidden 

unit j at time n  and M  is the number of the 

hidden nodes.

  The RBF-SG algorithm adapts the network pa-

rameters according to the following equations
[10].
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  The weights can be initialized to be either 

small random values or zeros. The initial centers 

can be determined, for example, by means of a 

nearest-neighbor clustering of a number of input 

samples in the training set. If no delay in proc-

essing isdesired, the centers can be simply ini-

tialized by forming them with the first few 

inputs. The values of width parameters also can 

be initialized in different ways. One simple meth-

od is to use a common value for all widths by 

using the average of the nearest-neighbor distances 

among initialized centers. 

  The RBF-SG algorithm has certain advantages 

over existing methods. All free network parame-

ters of the RBF-SG are adapted simultaneously 
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usually yielding improved overall solutions. The 

method can provide greater robustness to poor ini-

tial choices of parameters, especially the centers. 

Also the algorithm is well suited for on-line 

adaptive signal processing unlike block processing 

algorithms. As a localized basis function, Gaussian 

is fast decaying function. It can be assumed that 

not all the basis function units contribute sig-

nificantly to the network output values. Hence, in-

stead of training all the hidden nodes, one could 

train only a selected number of basis function no-

des with the largest output values. This means 

each node out power widely fluctuates in time. It 

is desirable that we take into account the fluctua-

tions of each node output power when we adapt 

the network parameters. In this paper, we apply 

simultaneous power estimation at each node to the 

RBF-SG algorithm which uses localized Gaussian 

basis function and fixed convergence factors. 

Ⅲ. The proposed algorithm using 
node-power estimation

  The convergence speed of the stochastic gra-

dient method is dependent on signal power[12]. If 

we use node output power in adapting the net-

work parameters we can acquire fast convergence 

speed. Each node output power fluctuates and it 

can be considered not much correlated with other 

node outputs due to its localized basis function. 

Defining )
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2)()(
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= , equation (3)   

becomes 
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  The auto-correlation matrix 
)(n

XXR  of node output

)(n
jX  is defined as 
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  If the correlation matrix 
)(n

XXR  is positive defi-

nite, it can be expressed as 
1−Λ QQ XX , where Q  is 

the eigen vector matrix of 
)(n

XXR  whose columns 

are the eigen vectors of 
)(n

XXR  and XXΛ is a diago-

nal matrix of eigenvalues ],...,,[ 21 MXX diag λλλ=Λ [12]. 

Then equation (6) can be expressed as
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  Taking the Z transform of the above equation 
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  This system is recursive low pass filter with 

time constant jτ given by 
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And the system is stable if the poles are within 

the unit circle. 
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  Average time constant can be depicted as
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  For some applications we might need the 

RBF-SG algorithm whose time constant is in-

dependent on the node output power. Now if we 

define the convergence parameter as avww p/αµ = , 

wα  is a small constant, the time constant avτ  be-

comes independent of jλ , i.e.,

                  w
av α

τ 1
=  (14)
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  Assuming that the node output power changes 

slowly, one common method for estimating the 

node power for the j-th node is to use a sin-

gle-pole low-pass filter, 
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  where 10 <<θ  is a smoothing parameter which 

controls the bandwidth and time constant of the 

power- estimation system )(zS  with its input 
2)( ][ n
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  Weight adaptation by node-power estimation 

RBF-SG can be written as
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  Similarly, we can apply node-power estimation 

RBF-SG to adaptation of centers and widths.
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  Computation complexity of the RBF-SG algo-

rithm is beyond this work. But the proposed 

method requires 4 more multiplications for the 

calculation
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 in (17), (20) and 

(23), respectively, at the training time n  than the 

RBF-SG algorithm does.

Ⅳ. Simulation results

  Performance simulation results are presented and 

compared. For the RBFN's the proposed training 

method was compared to the RBF-SG and linear 

TDL equalizers with LMS training. In the simu-

lations, performance was measured by the mean- 

squared-error (MSE) between the equalizer output 

and the correct symbols. The transmitted training 

symbol is a random sequence of bipolar signals 

(+1, -1). The initial centers were formed from the 

first few successive channel output samples of the 

training set. The RBFN weights were initialized 

to zeros. The spread parameters were initially set 

to one common value for all the basis function 

units of the RBFN's. The values of adaptation 

parameters for training algorithms and the size of 

the RBFN's used in the simulations were chosen 

to result in good minimum MSE performance. 

The additive white Gaussian noise nv  has zero 

mean, variance 0.001. The equalizer input di-

mension was set to 2=f  and the initial common 

value of the spread parameter was set to 2=σ . 

The RBF equalizer had 11 hidden nodes. The 

adaptation coefficients for RBF-SG and the pro-

posed were 03.0=cµ , 03.0=sµ  and 02.0=wµ  with 

no momentum. The smoothing parameter θ  was 

set to 9999.0 . The linear TDL equalizer had 11 

taps. The LMS convergence parameter was also 

set to 02.0=wµ  for the linear equalizer. The MSE 

curves were acquired by averaging 500-in-

dependent running.

  Example 1: In this example, we considered the 

performance of RBFN equalizers in the following 

nonlinear channel environment [9]. The overall 

channel output was given by 

             nnnn vhhy +−= 39.0  (24)

               15.0 −+= nnn ddh  (25)

  Figure 1 shows the MSE convergence of the 
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Figure 1. MSE performance in channel-1

equalizers. We can see that the TDL linear equal-

izer performed very poorly due to the nonlinear 

channel characteristics. All the RBFN equalizers 

gave better performance than the linear equalizer. 

The MSE of linear equalizer decreased no more 

than -5 dB. The RBF-SG converged in about 

24000 samples with minimum MSE, 27.8 dB. The 

proposed algorithm converged in about 12000 

samples compared to the RBF-SG performance. 

Furthermore, the proposed algorithm had lower 

minimum MSE, -28.4 dB.

  Example 2: This example shows equalization 

performance in another nonlinear channel environ-

ment [13]. The channel output was given by 

          nnnnn vhhhy +++= 32 05.01.0  (26)

              15.0 −+= nnn ddh  (27)

  The MSE convergence performance of the 

equalizers in the nonlinear channel is shown in 

Figure 2. The proposed algorithm's performance 

was better than that of RBF-SG. The linear FIR 

equalizer performed also very poorly. The linear 

equalizer had minimum MSE as -5.6 dB. The 

RBF-SG converged in about 22000 samples with 

minimum MSE, 29.5 dB. The proposed algorithm 

converged in about 16000 samples to the 

RBF-SG's minimum MSE, 29.5 dB. The proposed 

algorithm's minimum MSE was -30 dB. This ex-

ample again shows the superiority of the proposed 

algorithm to the linear TDL and nonlinear RBF-SG.

0 50 100 150 200 250 300

number of samples (x100)

Proposed
 RBF-SG
 TDL-LMS

Figure 2. MSE performance in channel-2

Ⅴ. Conclusions

  In this paper, a method of improving MSE 

convergence performance of the RBF-SG algo-

rithm is investigated. We analyzeconstraints and 

time constant of RBF-SG algorithm, and derive a 

method of making time constant independent of 

hidden-node output power by using sample-by- 

sample node output power estimation. The method 

for estimating the node power is to use a sin-

gle-pole low-pass filter. All the RBFN equalizers 

gave better performance than the linear equalizer. 

The proposed algorithm converged as about two 

times faster as the RBF-SG. Also, the proposed 

algorithm had lower minimum MSE than the 

RBF-SG. This shows the proposed algorithmbe 

applied more effectively to nonlinear channel 

equalization. 
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