

유비쿼터스 환경에서의 컨텍스트-인식을 위한 자생적 컨텍스트 모델과 서비스의 설계

정회원 오동 열*. 오해 석**

Design of the Context Autogenesis Model and Service for Context-Aware in Ubiquitous Environments

Dong yeol Oh*, Hae seok Oh** Regular Members

요 으

유비쿼터스 컴퓨팅에서 컨텍스트-인식은 사용자에게 개인화된 최적의 서비스를 제공하기 위하여 서비스 추론을 위한 입력 데이터를 획득하는 중요한 과정이다. 기존 연구는 사용자와 주변 환경 정보를 컨텍스트 인식의 주요 대상으로 간주하고, 이를 위한 센싱 기반의 미들웨어나 공간 내의 대상에 식별자를 부여하여 이를 관리하는 서버를 제시하고 있다. 가정이나 사무실, 혹은 자동차와 같이 사용자가 많은 시간을 보내는 동일한 공간에서는 사용자에게 제공되었던 서비스의 일련적인 상황 정보가 개인화된 최적의 서비스를 추론하기 위한 중요한 요소가 될 수 있다. 본 논문은 사용자와 사용자에게 제공된 서비스 간에 일련의 상황 정보를 사용자의 휴대용 디바이스에 저장하고, 이를 컨텍스트-인식의 대상으로 확장하는 자생적 컨텍스트 모델을 제안한다. 제안 모델은 컨텍스트-인식 단계에서 발생하는 중복된 센싱과 불필요한 검색을 최소화하고 사용자의 익명성을 최대한 보장하며 미들웨어의 컨텍스트 관리를 비용을 줄인다.

Key Words: Context-Aware, Ubiquitous Computing, Middleware, Pervasive-Computing

ABSTRACT

Context-Aware is the most important facts to reason a personalized and optimized service and to provide it to user. In the previous researches, user and surrounding environment were main facts of Context-Aware and middleware or center server has been proposed to support Context-Aware. In the daily space(for example, home, office, Car, etc), interactions between user and service can be a important facts of Context-Aware. In this paper, Context Autogenesis service model is introduced, simplified the Context-Aware process and designed the middleware which performs decentralize management for Context-Aware information of user's portable devices, so that problems occurred during the management and operation of existing Context-Aware system can be minimized and supporting user anonymity

I . 서 론

인터넷 시대에 언급되던 사이버 스페이스가 컴퓨 터와 네트워크로 구성된 가상 공간상에 사람이 개 입하는 방식이었다면 제록스사의 Mark Weiser에 의해 처음 발표된 유비쿼터스 컴퓨팅(Ubiquitous Computing), 혹은 스며드는 컴퓨팅(Pervasive Computing)은 사람이 존재하는 공간에 컴퓨터 군이 개

^{*} 숭실대학교 멀티미디어연구실 (javarian@inzent.com)

^{**} 경원대학교 소프트웨어대학 (oh@kyungwon.ac.kr) 논문번호: KICS2004-12-006, 접수일자: 2004년 12월 17일

입하는 방식으로 사용자가 언제 어디서나 일상 생활 속에 편재해 있는 컴퓨팅 자원을 이용하여 다양한 서비스를 제공받을 수 있는 기반구조이다¹¹.

기존 컴퓨팅 환경에서는 키보드나 마우스와 같은 정형화된 형태의 입력 장치를 통해서 자신의 의도 를 전달하고, 프린터나 모니터 혹은 사운드 카드와 같이 사용자의 오감으로 인식할 수 있는 형태의 출 력 장치로 그 결과를 인지하였다. 이에 비해, 유비 쿼터스 컴퓨팅 환경에서는 사용자의 실생활에 편재 되어 있는 다양한 센서와 컴퓨팅 자원들이 사용자 의 의도와 주변 환경을 인식하고 이를 근거로 사용 자에게 최적의 서비스를 제공해야 한다. 사용자의 의도와 주변 환경을 컴퓨터가 인식하기 위하여 컨 텍스트-인식 시스템에 대하여 많은 연구가 진행되고 있음에도 불구하고, 컨텍스트와 컨텍스트 인식 시스 템에 대하여 현재까지 통일된 정의가 없는 상태이 다. 최근 연구에서는 일반적으로 최적의 서비스를 제공하기 위하여 유비쿼터스 컴퓨팅 환경이 인식하 는 대상을 컨텍스트로 정의하고, 이를 인식하여 적 절한 정보나 서비스를 제공하는 일련의 과정을 담 당하는 시스템을 컨텍스트-인식 시스템으로 정의하 고 있다[2].

대부분의 기존 연구에서는 개인화된 서비스를 제 공하기 위하여 인식 대상을 사용자와 주변 환경에 중점을 두고 있으며, 서비스 제공을 위한 시스템 구 조로 모든 사물이나 서비스에 유일한 식별자를 부 여하고 식별자에 해당하는 정보를 서버가 관리 운 영하는 식별자 기반 서버 시스템이나 센싱 기술을 연동한 미들웨어 기반의 컨텍스트 인식 시스템을 제 안하고 있다. 인식 대상을 사용자와 주변 환경으로 국한을 두는 경우에는 서비스 제공을 위해 중복된 센싱이나 서버의 검색이 발생하게 되며, 식별자 기 반의 서버나 센싱 기술을 연동한 미들웨어에 모든 역할을 의존하는 형태의 시스템 구조는 시스템과 상호 연동을 위해 불필요한 개인 정보가 과다하게 노출됨으로서 익명성의 문제가 야기될 수 있으며 컨텍스트-획득의 복잡한 단계와 인식된 컨텍스트 정 보를 센터-집중 형태로 관리하기 위하여, 서비스의 구현과 운영상에 고비용이 요구된다.

제안 서비스 모델은 사용자와 개인화된 서비스 간에 일련의 상호 작용을 컨텍스트-인식의 대상으로 확장하고 이를 자생적으로 생성 관리하는 개념을 도입하여 컨텍스트-획득을 위한 센싱이나 정보 조회 횟수를 최소화하고 사용자의 익명성을 최대한 보장 한다. 이와 더불어, 획득된 컨텍스트를 미들웨어나 서버가 아닌 사용자의 휴대용 디바이스에 저장 관리하는 형태의 서비스 구조를 제시하여 컨텍스트-인식 단계와 미들웨어 기능의 단순화를 통해 시스템 구성 및 관리에 요구되는 비용을 최소화 한다. 본 논문의 구성은 다음과 같다. 2장에서는 컨텍스트 정의, 컨텍스트-인식 시스템의 요구사항과 컨텍스트-인식에 관련된 연구들을 소개하고 발생 가능한 문제점을 살펴본다. 3장에서는 자생적 컨텍스트-서비스 모델을 제시한다. 4장에서는 이를 응용한 시스템을 설계하고, 제안 서비스 모델을 평가한다. 5장에서는 결론을 맺는다.

Ⅱ. 컨텍스트 인식 시스템 관련 연구

2.1 컨텍스트 정의

사전적 의미의 컨텍스트는 무언가가 존재하거나 발생한 경우, 상호 연관성 있는 상태나 상황이다^[3]. 사전적인 의미를 컴퓨터 환경과 연관지어 의미있는 정의를 내리려는 노력으로 Schilit는 최초로 컨텍스 트를 사용자의 위치, 사용자의 정보, 공간내에 사용 가능한 물리적 대상의 정보, 사용자와 상호 작용하 는 대상의 상태로 정의하였다¹⁴. 그 이후, Dey는 대 상을 특정화 할 수 있는 정보로 애플리케이션과 사 용자 사이에 사용자, 사물, 대상물 등의 개체 상태 를 나타내는 정보로 정의하였다¹⁵¹. 국내 연구로 광 주과학 기술원의 우운택은 컨텍스트를 응용 서비스 에 따라 5W1H(Who, What, Where, When, Why, How)의 조합으로 정의하였다^[6]. 이와 같이 현재까 지의 연구 내용으로 볼 때, 컨텍스트는 일반적인 용 어이지만 응용 방법에 따라 조금씩 다른 차이를 보 이고 있다..

2.2 컨텍스트-인식 시스템 정의

컨텍스트의 개념이 현재까지 공통된 정의로 정립되지 않았기 때문에 컨텍스트-인식의 정의보다는 컨텍스트-인식 시스템에 필요한 요구사항을 언급한다. 초기 Schilit는 컨텍스트-인식 시스템의 구성요소로서 첫째, 사용자가 가까이에 있는 대상물을 선택을용이하게 하는 인터페이스(Proximate Selection), 둘째, 컨텍스트가 변화함에 따라 새로운 서비스 컴포넌트의 추가, 삭제 및 새로운 연관 관계를 형성하는 것(Automatic Contextual Configuration), 셋째, 컨텍스트에 따라서 다른 결과를 제공하는 것(Contextual Information and commands), 넷째, 컨텍스트 시스템이 작동해야하는 관계를 명시한 간단한

물(Contextual Triggered Actions)을 언급하였다. 이후에 Pascoe는 컨텍스트-인식에 필요한 요소를 컨텍스트-센싱, 컨텍스트 적응, 자원 발견, 컨텍스트 연관(컨텍스트를 디지털 데이터로 변환하는 것)로 구분하였다¹⁸¹. Dey는 이러한 개념을 정리, 통합하여컨텍스트-인식 응용 프로그램이 지원해야 하는 요소로서 첫째, 사용자에게 정보와 서비스를 제공 하는기능, 둘째, 사용자를 위하여 서비스를 자동으로 수행하는 기능, 셋째, 이후 검색을 위한 상황 정표의표시 기능으로 정의하였다¹⁹¹.

2.3 컨텍스트-인식 시스템 관련 연구

2.3.1 식별자 기반 서버 모델(Auto-ID와 uID)

Auto-ID는 기본적으로 사용자의 실생활에 존재하는 다양한 개체에 EPC(Electronic Product Code)라는 일련 번호를 이용하여 유일한 키를 부여하고, 이에 관련된 표준화와 기술 인프라를 위하여 각각 Auto-ID 센터를 운영하고 있다. Auto-ID 센터 중앙에는 EPC리더를 통해서 읽어온 EPC 데이터를 EPC 도메인 이름으로 변경하는 ONS(Object Naming Server)와 PML(Physical Markup Language)이라는 XML 마크업 언어를 이용하여 이를 총괄운영하는 SAVANT가 있다¹⁰⁰. 그림 1은 Auto-ID 센터의 시스템 구조를 나타낸다.

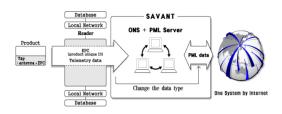


그림 1. Auto-ID 센터 시스템 구조

이와 유사한 글로벌 서버 모델로 일본에서 사카 무라 켄이 중심으로 연구되고 있는 uID가 있으며 uID 센터에서는 SAVANT와 유사한 역할을 담당하 고 있는 uID Resolver가 있다^[11].

2.3.2 유비쿼터스 미들웨어 모델(Gaia, Aura)

미국 일리노이주 어바나 샴페인 캠퍼스의 Gaia는 물리적인 공간과 소프트웨어 인프라가 함께 자연스 럽게 융화되는 액티브 공간을 보다 용이하게 구현 할 수 있는 프레임워크를 제공해주는 소프트웨어 미들웨어로서, 미들웨어에 운영체제의 개념을 도입 하였다. Gaia는 컴포넌트를 관리하기 위한 코어와 기본적인 5가지의 서비스(이벤트 관리, 컨텍스트 관리, 컨텍스트 파일 관리, Presense 서비스, Space 저장소)를 제공한다. Gaia에서는 컨텍스트-인식을 위하여 컨텍스트 관리와 컨텍스트 파일 관리 서비스를 제공한다. 센서를 통해서 센싱된 컨텍스트를 기술하기 위하여 영어 문법 형식과 유사한 형태로 'Context(컨텍스트 종류, 주체, 관계, 대상)'과 같은형태로 기술하며, 이를 XML(Extensible Markup Language)형식으로 변환한후 컨텍스트의 타입에 따라서 가상 디렉토리 형태로 Gaia의 파일 시스템 미들웨어가 저장, 관리한다¹²¹. 그림 2는 Gaia의 컨텍스트 관리 시스템을 나타낸다.

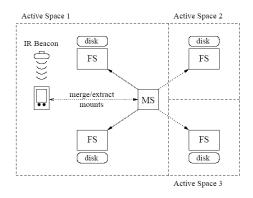


그림 2. Gaia의 컨텍스트 관리 시스템

Gaia는 컨텍스트를 Context File Server라는 가상 디렉토리 서버에 관리함으로서 획득한 컨텍스트 정 보의 효과적인 관리 방법을 제시하였으며 이는 애 플리케이션과의 상호 연동을 용이하게 한다. 이와 유사한 프로젝트로는 미국 카네기 멜론 대학의 Aura 프로젝트가 있으며, Aura 프로젝트에서는 사 용자의 환경을 Aura라는 추상적인 개체로 모델링하 고, 이를 다시 Context Observer, Task Manager등 여러 개의 지원 컴포넌트로 구성하고 있다. Context Observer는 사용자 및 환경 변화를 지속적으로 모 니터링 하면서 컨텍스트-인식 서비스를 제공하고 있 다^[12]. 국내에서는 광주과학 기술원의 우운택이 제시 한 ubi-UCAM이 있다. ubi-UCAM은 컨텍스트 인 식 응용 서비스를 통합하기 위한 컨텍스트 통합기 로, 각 센서로부터 5W1H 형태의 초벌 컨텍스트를 획득하고 이를 컨텍스트 통합기가 통합 컨텍스트로 생성한다. 이를 관리기가 전달받고 해당 서비스를 결정하여 처리기가 처리하는 형태로 작동한다[13].

2.4 기존 컨텍스트-인식 시스템의 제한점

기존 연구에서는 컨텍스트-인식 대상을 사용자와 주변 환경에 중점을 두고, 센터-집중형의 시스템 구 조를 제시함으로서 다음과 같은 관리 및 운영상에 제한을 가지고 있다.

2.4.1 중복된 센싱 및 검색 단계 발생

사용자와 주변 환경으로 컨텍스트-인식의 대상을 한정하는 경우, 서비스가 제공되는 특정 공간 내에 이벤트가 발생할 때 마다 기존에 사용자가 서비스 를 제공 받았는지의 유무와 상관없이 센싱을 통해 서 데이터를 획득하는 과정이나 해당 식별자로 서 버를 검색해야 하는 과정이 요구된다^{100[11][13]}.

2.4.2 사용자 익명성

사용자는 유비쿼터스 공간 내에서 서비스를 제공받기 위해서, 지문 인식이나 로그온과 같은 사용자의 인식 단계를 거쳐서 자신의 정체성을 미들웨어에게 알리게 된다^{[12][13]}. 개인화된 최적의 서비스를 제공하기 위하여 컴퓨팅 환경이 서비스의 대상이누군지를 명확하게 인식해야 하는 경우도 있으나,모든 경우에 미들웨어가 항상 사용자가 누구인지알아야 한다는 것은 사용자의 익명성을 시스템이보장하지 못한다는 것을 의미한다.

2.4.3 시스템 관리 및 서비스 운영을 위한 고비용의 컴퓨팅 환경

유비쿼터스 공간 내에 존재하는 모든 사물이나서비스에 식별자를 부여하여 이에 해당하는 정보를 센서 서버가 운영하는 경우, 식별자가 존재하는 대상에 대해서 명확하게 컨텍스트를 생성 할 수 있다는 장점이 있으나, 해당 서버를 운영하는 데에는 많은 비용이 요구되며, 서버 장애는 전체 시스템의 장애를 야기할 수 있다^{[10][11]}. 인식된 컨텍스트 정보와서비스에 필요한 다양한 자원들(문서파일, 동영상파일 등)을 미들웨어가 저장 관리하는 경우에도, 시스템의 관리 운영을 위해 고비용의 컴퓨팅 환경이요구된다^{[12][13]}.

Ⅲ. 자생적 컨텍스트 모델의 제안

본 장에서는 컨텍스트인식 대상을 확장하고, 생성된 컨텍스트를 사용자의 휴대용 디바이스에 분산하여 관리하는 구조인 자생적 컨텍스트 모델을 제안한다.

3.1 자생적 컨텍스트 모델

제안하는 모델에서 컨텍스트는 임의의 한 시점과 특정 공간 내에 존재하는 사용자, 환경, 자원에 관련된 상황 정보와 사용자와 개인화된 서비스 간에 상황 정보로 구성된다. 이와 같이 사용자, 환경, 자원 및 서비스에 관련된 컨텍스트를 분류 표현하기 위해서 표 1과 같이 대상의 특징에 따라서 사용자컨텍스트(User-Context), 환경 컨텍스트(Environment-Context), 자원-컨텍스트(Resource-Context), 서비스-컨텍스트(Service-Context)로 분류 한다.

표 1. 컨텍스트의 분류 및 정의

컨텍스트	정 의	예		
사용자 -컨텍스트	사용자에 관련된 일련 의 상황을 의미하는 컨텍스트	- , - , , , ,		
환경 -컨텍스트	유비쿼터스 서비스 공 간 내에 존재하는 물 리적인 환경에 관련된 일련의 상황을 의미하 는 컨텍스트	짜, 요일, 습도, 주식		
자원 -컨텍스트	유비쿼터스 서비스 공 간 내에 컴퓨팅 시스 템에 관련된 하드웨어 나 소프트웨어 자원 및 센서	드폰, PDA, 컴퓨터, GPS, 지문인식 센서,		

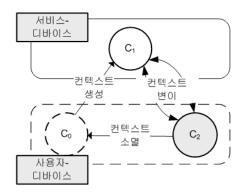


그림 3. 자생적 컨텍스트 라이프 사이클

이와 같은 컨텍스트의 정의 및 분류를 기본으로 자생적 컨텍스트 모델에서는 서비스를 제공하는 디 바이스로부터 정보를 획득하여 서비스-컨텍스트를 생성한다. 기존 컨텍스트는 센서나 서버의 검색을 통해서 획득되는데 비해서 서비스-컨텍스트는 사용자에게 서비스를 제공되는 과정에서 자생적으로 생성 관리된다. 이러한 일련의 과정은 사용자가 인식하지 못한 상태에서 자연적으로 진행되며, 그림 3과 같이 특정한 형태의 라이프 사이클을 가지고 사용자-디바이스와 서비스-디바이스 사이에서 임의의 시간에 서로 다른 형태로 저장 관리되므로 자생적인컨텍스트의 관리가 가능해 진다.

라이프 사이클에 따른 각 단계별 정의는 다음과 같다.

- 컨텍스트 생성(Context Creation)

초기에 사용자의 휴대형 디바이스에 서비스 컨텍스트가 존재하지 않는 경우(Co), 사용자가 개인화된서비스를 제공받게 되면 서비스에 관련된 일련의상황과 부수적인 정보들을 포함하는 서비스-컨텍스트(C1)가 서비스를 제공한 디바이스에 의해서 생성되는 과정을 의미한다.

- 컨텍스트 변이(Context Propagation)

기존에 존재하는 서비스 컨텍스트(C_1)가 어떠한 요인에 의해서 컨텍스트의 내용이 변화하는 것(C_2)을 의미하여, 이러한 일련의 과정은 서비스를 제공한 디바이스와 사용자의 휴대용 디바이스 간에 발생한다.

- 소멸(Context extinction)

미리 생성되어있거나, 현재까지 변이된 컨텍스트 의 정보가 사용자의 휴대용 디바이스에서 삭제되는 것을 의미한다.

3.2 자생적 컨텍스트 서비스

3.2.1 제안 서비스의 구성 요소 및 가정

자생적 컨텍스트-모델이 실제 시스템에 도입되는 경우 다음과 같은 형태의 서비스로 구성된다. 자생

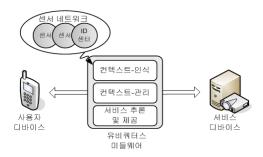


그림 4. 자생적 컨텍스트 서비스의 구성도

적 컨텍스트 서비스는 사용자, 사용자 휴대용 디바이스, 컨텍스트-인식 미들웨어, 서비스 디바이스로 구성된다.

서비스를 구성하고 있는 각 구성요소는 표 2와 같이 정의 할 수 있다.

표 2. 서비스 구성 요소 및 정의

구성 요소	정 의
사용자 디바이스	사용자의 휴대형 디바이스로 유선 또는 무선으로 연동이 가능하고 기록 가능한 메모리를 가지고 있으며 단순 USB 메모리와 PDA, 노트북 등이 이에 해당한다.
서비스 디바이스	사용자에게 서비스를 제공하는 디바이스로서 특정 환경에서는 사용자 디바이스가 서비스 디바이스가 될 수 있으며, 유비쿼터스 스피 커, 스트리밍 서버 등이 해당한다.
	컨텍스트 인식, 컨텍스트 관리, 서비스 추론 및 제공의 기능을 담당하고 유선 또는 무선 으로 디바이스들과 연동이 가능하고 디바이 스를 제어하는 기능을 담당하고 있다.

자생적 컨텍스트는 사용자가 사용자 디바이스를 휴대하고 특정 공간내에 정의된 유비쿼터스 컴퓨팅 에 참여하는 환경에서 적용되는 개념이므로 이와 같은 환경과 본 시스템의 주요 설계 대상이 아닌 부분에 관하여 다음과 같은 가정을 통해서 대상 도 메인을 한정한다.

- 가정 1 : 사용자는 항상 휴대형 디바이스를 휴대하고 있다. 휴대형 디바이스는 랜덤하게 읽기 쓰기 가능하고, 사용자는 자신의 정보를 사용자 디바이스에 저장하여 사용자-컨텍스트로 사용 가능하다.
- 가정 2 : 사용자 디바이스와 서비스 디바이스는 유선 또는 무선망을 이용하여 미들웨어와 물리 적으로 통신이 가능하며, 서비스 디바이스를 미 들웨어가 제어 할 수 있다.
- 가정 3 : 미들웨어는 사용자 디바이스 인식과 서비스 디바이스를 제어, 개인화된 서비스 추론, 센서나 별도 서버를 통한 컨텍스트의 인식, 서 비스-컨텍스트를 생성, 해당 서비스를 호출을 담당한다 .
- 가정 4 : 환경-컨텍스트는 센서 네트워크를 통해 인식되며, 자원-컨텍스트는 미리 인식되어 있는 것으로 가정한다. 자원-컨텍스트 중에 서비스 디바이스에 관련된 컨텍스트는 해당 서비스-디바이스 식별자와 그룹 식별자를 함께 저장

하고 있는 것으로 간주한다.

- 가정 5 : 서비스-컨텍스트는 컨텍스트-인식 미 들웨어가 생성 인식하고 이를 필요한 경우 사 용자 디바이스로 전송하다.
- 가정 6 : 미들웨어는 단순한 개인키로 특정 파일의 내용을 암호화 할 수 있는 메커니즘을 가지고 있다.

3.2.2 시나리오 별 제안 모델의 서비스 실행 순서 기존 컨텍스트-인식 서비스의 경우, 센서나 서버로부터 획득된 컨텍스트 정보는 미들웨어에 의해서 저장 관리 되었으나, 제안 자생적 컨텍스트 서비스모델에서는 사용자 디바이스에 서비스-컨텍스트가 저장되며, 컨텍스트-인식 미들웨어는 별도로 서비스컨텍스트를 저장 관리하지 않는다. 제안하는 자생적컨텍스트 서비스는 사용자 디바이스내에 서비스-컨텍스트의 존재 유무에 따라 다음과 같이 두 가지로구분하여 수행된다.

- 사용자가 개인화된 서비스를 받은 적이 없는 경우

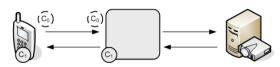


그림 5. 서비스-컨텍스트가 존재하지 않는 경우, 서비스-컨텍 스트의 흐름

이와 같은 경우에는 사용자 디바이스 내에 서비 스컨텍스트가 존재하지 않는 경우를 의미하며 그림 6과 같은 단계로 서비스가 진행된다.

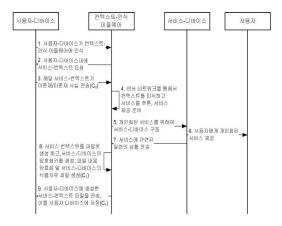


그림 6. 서비스-컨텍스트가 초기에 존재하지 않는 경우, 서비 스 구성 요소 간에 관계도

- 사용자가 개인화된 서비스를 받은 적이 있는 경우

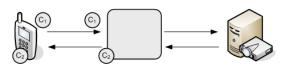


그림 7. 서비스-컨텍스트가 존재하는 경우, 서비스-컨텍스트 의 흐름

이와 같은 경우에는 사용자 디바이스 내에 서비 스컨텍스트가 존재하는 경우를 의미하며 그림 8과 같은 단계로 서비스가 진행된다.

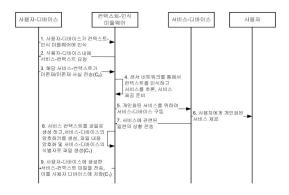


그림 8. 서비스-컨텍스트가 초기에 존재하는 경우, 서비스 구성 요소 간에 관계도

Ⅳ. 시스템의 설계와 구현 및 평가

4.1 시스템의 설계

제시된 시나리오를 통해서 이를 보다 구체화 시 킨 제안 시스템은 그림 9와 같다.

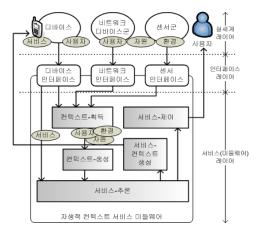


그림 9. 제안 시스템 구성도

제안 시스템은 유비쿼터스 컴퓨팅 환경을 실세계 레이어, 인터페이스 레이어, 서비스(미들웨어) 레이어로 구분한다. 가장 상단에 위치한 실세계 레이어는 사용자가 위치한 유비쿼터스 공간에 존재하는 물리적인 컴퓨팅 환경을 의미하며, 센서, 디바이스, 네트워크 디바이스 등이 이에 해당한다. 인터페이스 레이어는 각각의 물리적 컴퓨팅 환경을 서비스 레이어와 연동하기 위하여 규격화되고 통일된 인터페이스 환경을 제공한다. 서비스 레이어는 실제 컨텍스트-인식, 서비스 추론, 컨텍스트 관리 및 서비스가실행되기 위한 서비스들로 구성 된다.

제안 시스템의 컴포넌트간 서비스의 단계는 다음과 같다. 첫째, 디바이스에 서비스-컨텍스트가 존재하지 않는 경우, 센서 인터페이스와 디바이스 인터페이스를 호출하여 환경에 관련된 정보와 사용자에 관련된 정보를 획득하고, 획득된 정보를 이용하여환경-컨텍스트와 사용자-컨텍스트를 생성한다. 이렇게 생성된 환경-컨텍스트와 사용자-컨텍스트를 서비스추론 컴포넌트에 입력 값으로 사용하게 되며, 이를 이용하여개인화된 서비스가 제공되며, 이와 동시에 서비스-컨텍스트가 컴포넌트에 의해 생성되고이를 사용자-디바이스로 전달된다. 둘째, 사용자 디바이스에 서비스-컨텍스트가 존재하는 경우, 서비스컨텍스트를 가지고 개인화된 서비스를 제공하게 되며, 서비스를 제공하면서 갱신된 서비스-컨텍스트가 사용자 디바이스에 전송된다.

4.2 시스템 구현

제안 시스템에서 시스템을 구현하기 위한 시나리오는 특정 공간내 사용자에게 미디어 서버를 이용하여 영화 추천 기능과 관람 했던 영화를 연속성을 가지고 제공하는 것을 목적으로 하며, 서비스의 제공을 위해 정적인 사용자-컨텍스트 요소와 동적인사용자-컨텍스트 요소를 사용자-디바이스에 저장하고 센서를 통해서 환경-컨텍스트를 입력받는다. 본시스템의 테스트 환경은 그림 10과 같다.

테스트 환경에서는 USB(Universial Serial Bus)메모리를 사용자-디바이스로 가정하고 USB 메모리에 사용자의 성별, 나이, 결혼 유무, 교육정도를 기술하여 파일 형태로 저장, 이를 사용자-컨텍스트로 가정한다. 날씨, 요일, 공간 내에 주위 사람의 사용자-디바이스에 대한 정보를 환경-컨텍스트를 생성하기 위한 센서 데이터로 간주하며, 센서 데이터는 별도의애플리케이션을 통해서 미들웨어로 입력된다. 서비스-디바이스에 해당하는 미디어 재생 서버는 여러

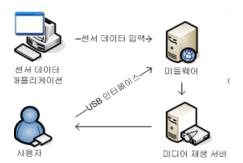


그림 10. 시스템 구현을 위한 테스트 환경

개의 동영상 파일을 저장하고 이를 재생할 수 있다. 미디어 재생 서버는 사용자의 동의에 의해서 영화를 재생하고, 이후 사용자가 서비스 공간을 이탈한경우 현재 동영상 미디어에 대한 정보와 영화에 대한 자세한 정보를 알 수 있는 웹상의 URL 정보를 동시에 파일 형태로 저장하며, 저장하는 파일은 미디어 재생 서버에 미리 할당된 암호화 키를 이용하여 암호/복호화 한다.

본 시스템에서는 컨텍스트와 서비스에 관련된 일 련의 정보를 정형화하기위하여 나타낼 수 있는 XML 형태의 기술 방식을 사용한다. 제안 시스템에 서 인터페이스 레이어를 이용하여 획득된 컨텍스트 정보와 개인화된 서비스 및 서비스에 관련된 일련 의 데이터를 기술하고 저장하기 위하여 XML 형태 로 컨텍스트를 기술하여 사용한다.

4.3 시스템 평가 및 비교

제안 시스템은 사용자와 서비스 간에 상호작용을 기술한 서비스 컨텍스트를 컨텍스트 인식의 대상으로 포함하고, 이를 사용자의 휴대용 디바이스에 분산 관리하는 구조를 제시함으로서, 가정이나 자동차혹은 사무실과 같이 사용자가 일상적으로 활동하는 유비쿼터스 환경에서 컨텍스트 인식 과정을 그림 11과 같이 단순화 시킨다.

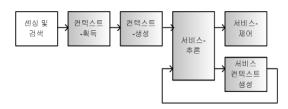


그림 11. 제안 시스템의 컨텍스트-인식 과정

기존 타 시스템과의 비교를 위하여 표 4와 같이 5가지 항목을 제시한다.

표 4. 타 서비스와의 비교 항목

항 목	내 용				
인식대상	컨텍스트 인식의 대상. 사용자, 환경, 자원, 서비스로 구분				
사용자 익명성	서비스를 제공받기 위한 사용자의 신원 정보 노출 정도				
센싱 및 검색 요구	사용자가 특정 공간 내에 등장하는 경 우, 컨텍스트-획득을 위한 센싱 및 검 색 과정이 발생하는 빈도수				
서비스 관련 정보의 관리	사용자와 서비스 관련 정보를 관리하는 방법 비교				
컨텍스트의 휴대성	서로 다른 공간상에 서비스의 연속성 지원 여부				

컨텍스트-인식 대상의 관점에서 보면 식별자 기반 센터의 경우 자원에 관련된 컨텍스트-인식을 위하여 설계되었으며, 미들웨어 기반의 서비스는 사용자, 환경, 자원을 컨텍스트-인식 대상으로 설정하였다. 제안 시스템에서는 컨텍스트 인식의 대상을 사용자, 환경, 자원, 서비스로 구분하여 사용자와 관련된 일 력의 서비스도 인식 대상으로 확장하였다. 사용자 익명성의 경우, Gaia와 Ubi-UCAM는 지문 인식이 나 로그온을 통하여 사용자-컨텍스트를 획득하는데 비해서 제안 서비스는 사용자-디바이스에 사용자 본 인 스스로가 자신의 정보 노출 정도를 결정하여 사 용자-컨텍스트에 관련된 데이터를 저장하였으며, Gaia 와 Ubi-UCAM은 미들웨어가 획득한 컨텍스트를 가 지고 사용자가 누구인지를 명확하게 판별할 수 있 었으나 제안 시스템에서는 사용자-컨텍스트만 가지 고 사용자가 누구인지는 알 수가 없다. 제안 모델은 공간 내에 이벤트가 발생할 때, 사용자-디바이스내 의 서비스-컨텍스트의 존재 유무를 파악하여 서비스 하기 때문에 이벤트가 N번 발생하는 경우 매번 센 싱이나 검색을 통해서 정보를 획득하는 서비스 구 조에 비교하여 그보다 더 적은 센싱 이나 검색이 발생한다. 사용자와 서비스 간에 일련 정보를 식별 자 기반 센터의 경우, 이를 지원하지 않으며 Gaia에 서는 일련 정보를 미들웨어에서 생성하고 저장하는 방식을 채택하였다. 따라서 미들웨어 간에 컨텍스트 의 공유를 위해서는 별도의 메카니즘을 요구한다. 제안하는 모델에서는 서비스-디바이스와 사용자-디 바이스 간에 생성된 일련의 컨텍스트를 사용자의 휴대 디바이스에 저장 관리 함으로서, 미들웨어간 컨텍스트 공유를 용이하게 하며 획득된 컨텍스트에 대한 사용자 휴대성을 제공한다. 컨텍스트-인식 서 비스에 대한 비교는 표 5와 같다.

표 5. 컨텍스트-인식 서비스 비교

구분	인식 대상	익명성 보장	센싱 검색 요구 횟수		컨텍스트 휴대성		
제안 모델	S, E, U, R	s	< N	UD	0		
식별자 기반 센터	R	-	N	MD	0		
GAIA	E, U, R	w	N	MD	X		
Ubi- UCAM	E, U	w	N	MD	X		
old rid . C-C E-E H-H B-B							

인식 대상 : S=Service, E=Environment, U=User R=Resource 익명성 보장 : w=weak, s=strong

센싱 검색 요구 횟수 : 사용자 N번 인식시, 센싱 혹은 검색 과정 요구

컨텍스트 저장 : UD = User Device, MD = MiddleWare 컨텍스트 휴대성 제공 여부: h = high, m=middle, l=low

V. 결론 및 향후 연구

제안하는 자생적 컨텍스트 모델은 서비스에 관련된 부가정보를 유지하는 서비스-컨텍스트를 기존 컨택스트-인식의 대상으로 확장하였으며, 서비스-컨텍스트를 기반으로 사용자에게 개인화된 서비스를 제공하므로 컨텍스트-인식 단계가 중복되는 것을 방지하고, 불필요한 센싱의 과정을 생략할 수 있다. 이와 더불어 사용자 디바이스에 서비스-컨텍스트가 존재하는 경우, 사용자 개인에 관련된 정보를 매번 노출하지 않아 익명성의 문제를 최소화 한다. 또한 획득된 서비스-컨텍스트를 암호화된 파일형태로 사용자-디바이스에 관리 저장함으로서 미들웨어가 컨텍스트에 관련된 정보를 저장 관리하는 경우와 비교하여 미들웨어의 컨텍스트의 관리가 용이하다.

향후 연구로 자생적-컨텍스트 시스템을 위한 공통 된 컨텍스트의 기술 방식 및 상호 기술된 컨텍스트 를 교환하기 위한 공통된 통신 프로토콜에 대한 연 구와 개인화된 서비스를 제공하기 위한 서비스 추 론 모델이 요구된다.

참 고 문 헌

- [1] Marc Weiser. "The computer for the 21st century", *Scientific American*, pp.94-104, 1991.
- [2] 임신영. 허재두, 박광로, 김채규, "상황인식 컴 퓨팅 기술 동향", *IITA 주간기술동향*, 제1142 호, pp.1-15, 2004. 4. 21

- [3] 브리테니어사전, http://www.britannica.com
- [4] Bill Schilit, Norman Adams, and Roy Want. "Context-aware computing applications." In IEEE Workshop on Mobile Computing Systems and Application, 1994.
- [5] Anind K. Dey and Gregory D. Abowd. "Towards a Better Understanding of context and context-awareness", Technical Report GIT-GVU-99-22, Georgia Institute of Technology, Colleage of Computing, June 1999.
- [6] 장세이·우운택, "유비쿼터스 컴퓨팅 환경을 위한 센싱 기술과 컨텍스트-인식 기술의 연구 동향", 정보과학회지 제 21권 제 5호, pp. 18-28, 5, 2003.
- [7] B.Schilit, and M. Theimer, "M Disseminating Active Map Information to Mobile Hosts," *IEEE Network*, 8(5), pp.22-32, 1994.
- [8] Jason Pascoe. "Adding generic contextual capabilities to wearable computers", In Proceedings of the Second International Symposium on Wearable Computers, Pittsburgh, Pennsylvania, IEEE Computer Society Press, October 1998.
- [9] Daniel Salber and Gregory D. Abowd "The Design and User of a Generic Context Server", Technical Report GIT-GVU-98-32, Microsoft Research, January 1998.
- [9] EPCGolbal, http://archive.epcglobalinc.org
- [10] Ubiquitous ID Center, http://www.uidcenter.
- [11] Christopher K. Hess and Roy H. Campbell, "A Context File System for Ubiquitous Computing Environments", *Technical, Report UIUCDCS-R-2002-2285 UILU-ENG-2002-1729, University of Illinois at Urbana-Champaign,* July 2002.
- [12] David Garlan, Dan Siewiorek, Asim Smailagic,

- and Peter Steenkiste, "Project Aura: Towards Distraction-Free Pervasive Computing Environments", IEEE Pervasive Computing, special issue on Intergrated Pervasive Computing Environments, Volumn 1. Number 2, pp22-31, April-June 2002.
- [13] 장세이, 우운택, "유비쿼터스 컴퓨팅 환경을 위한 컨텍스트 기반 애플리케이션 구조", 한 국 정보과학회 HCI 논문집, 제 2권, pp. 346-351, 2003.

오동열(Dong yeol Oh)

정회원

1999년 경희대학교 전자계산학 과 졸업

2002년 숭실대학교 컴퓨터학과 석사

2004년 숭실대학교 컴퓨터학과 박시수료

<관심분야> 유비쿼터스 컴퓨팅,

P2P, 멀티미디어

오해석(Hae seok Oh)

정회원

1975년 서울대학교 응용수학과 학사

1981년 서울대학교 계산통계학 과 석사

1989년 서울대학교 계산통계학 과 박사

1976년~1982년 태평양화학

(주), (주)삼호 전산실

1982년~2003년 숭실대학교 정보과학대학 교수 1990년~1991년 일본 동경대학교 객원교수

1997년~1999년 숭실대학교 부총장

2000년~2001년 스탠포드대학교 객원교수

2003년~현재 경원대학교 소프트웨어대학 교수 <관심분야> 멀티미디어, 데이터베이스, 정보보호