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ABSTRACT

The analysis of maximum diversity order and coding gain for multiple-input multiple-output orthogonal 

frequency division multiplexing (MIMO-OFDM) systems over time-and frequency-selective (or doubly-selective) 

channels is addressed in this paper. A novel channel time-space correlation function is developed given the 

spatially correlated doubly-selective Rayleigh fading channel model.Based on this channel-model assumption, the 

upper-bound of pairwise error probability (PEP) for MIMO-OFDM systems is derived under the maximum 

likelihood (ML) detection. For a certain space-frequency code, we quantify the maximum diversity order and 

deduce the expression of coding gain. In this work, the impact of channel time selectivity is especially studied 

and a new definition of time diversity is illustrated correspondingly

Key Words：Space-frequency code, MIMO-OFDM, spatial correlation, doubly-selective channel

* Graduate School of Information Technology and Telecommunications, Inha University (yangqing_hai@hotmail.com, 

kskwak@inha.ac.kr)

  논문번호：KICS2005-03-094,  수일자：2005년 3월 3일

※ This work was supported by University IT Research Center Project, Korea(INHA UWB ITRC)

Ⅰ. Introduction

  Multiple-input multiple-output (MIMO) [1, 2, 3] 

has recently emerged as one of the most sig-

nificant technical breakthroughsto provide high 

rate, reliable and spectrally efficient communica-

tions over the wireless medium. Broadband 

MIMO channels offer spatial diversity due to 

multiple antennas, as well as frequency diversity 

due to delay spread. The orthogonal frequency di-

vision multiplexing (OFDM) technique sig-

nificantly reduces the receiver complexity in wire-

less broadband systems, as the equalizer is just a 

single-tap filter in the frequency domain. Then 

MIMO in combination with OFDM, i.e., 

MIMO-OFDM [4], is proposed as an attractive 

multi-carrier approach for future broadband wire-

less systems. 

  However, most previous considerations on 

MIMO-OFDM have been restricted to the block 

time-invariant (i.e., quasi-static) frequency selective 

channel. This may not be valid at high mobile 

speeds. This paper extends the channel assumption 

to be time-varying within a transmission block 

(one spatial OFDM symbol in this paper). The 

motivation for doing so is as follows:

∙Modeling the time-varying fading within 

blocksleads to an additional source of diversity, 

i.e., time diversity [18, 14].

∙The conventional block time-invariant fading 

model severely restricts the block length in the 

case of fast fading channels. A smaller block 

length may be a disadvantage for code design, 

and it usually implies that the channel has to 

be estimated more frequently. Furthermore, 

explicitly modeling the channel's time variation 

within a longer block typically requires fewer 

parameters than using individual time-invariant 

channel models for several shorter blocks [19].

  With above motivations, maximum diversity (joint 
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frequency-time diversity) transmission over time- 

and frequency selective (doubly-selective) channels 

is addressed in [14] for single input single output 

channels. On the other hand, time variations 

within one OFDM symbol block lead to the loss 

of subcarrier orthogonality, resulting in intercarrier 

interference (ICI) [12, 20]. Whereas, the work of 

[15] makesfull use of the time-selective channel 

as a provider of time diversity while not generat-

ing ICI.

  For MIMO considerations, the MIMO-OFDM 

system model under spatially uncorrelated (espe-

cially i.i.d.) doubly-selective channels is introduced 

in [11]. The work of [11] analyzes ICI but with 

the diversity problem unmentioned. This paper 

tries to make up with it under a certain space- 

frequency coded [5, 6, 7, 8, 9] MIMO-OFDM 

system. Our detailed contributions can be sum-

marized as follows.

∙We develop a spatially correlated doubly- 

selective Rayleigh fading channel model and 

especially obtain its time-space correlation 

function.

∙Using this channel model, we derive the upper 

bound of PEP for space-frequency coded MIMO- 

OFDM system.

∙We quantify the maximum diversity order and 

derive the expression for coding gain. Espe-

cially, we focus on the impact of channel 

time-selectivity on time diversity, and a novel 

definition of time diversity order is introduced.

  The rest of this paper is organized as follows. 

Sec.II develops the spatially correlated doubly- 

dispersive Rayleigh fading channel model. Sec.III 

introduces the data model of space-frequency 

coded MIMO-OFDM system. Diversity order is 

quantified in Sec.IV. Sec.V provides simulation 

results. And Sec.VI concludes this paper. 

  Notation: we will use   ,     and     

to denote the   th element, n-th column and 

m-th row of matrix A, respectively.    and

   is the trace and rank of matrix A, respec-

tively.   is the ×  identity matrix;   




   the ×  FFT matrix.  

stands for the expectation operator, ⊗ for Kronec-

ker product,   for integer floor and   for in-

teger ceiling. The superscripts    will denote 

transpose, conjugate, Hermitian, respectively. 

    denotes the minimum value between a and 

b.  represents the complex Gaussian dis-

tribution with mean 0 and variance .

Ⅱ. Channel Model

  In this section, we extend the channel model 

introduced in [8] to doubly-selective fading con-

ditions. For the case of MIMO channel with MR 

receive and MT transmit antennas, the time- vary-

ing impulse response of the channel can be ex-

pressed as [6, 10, 8]

h imp(t,τ)= ∑
L-1

l=0
h(t,l)δ( t-τ l) (1)

where δ(.) is the Kronecker delta function; L=

⌊wτ DS⌋ denotes the number of channel taps 

with w and τ
DS

 representing the signal band-

width and delay spread，respectively. The 

MR×MT complex-valued random matrix h( t,l) 

represents the l th tap at the time t, whose delay 

is τ
l
. Here, one can think of each of the taps as 

representing a significant scatterer cluster with 

each of the paths emanating from within the same 

scatter cluster experiencing the same delay.

  According to Eq. (1), the time-varying fre-

quency response of the channel can be easily 

obtained as

   H(t,f)= ∑
L- 1

l=0
h(t,l)e

- j2 πfτ l (2)

  The discrete-time simulation model can be 

obtained from the continuous-time structure by 

sampling the h imp(t,τ) in t and τ with sam-

pling period Ts (appropriately chosen and equal to 

the symbol period), e.g., by substituting τ
l=lTs 
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and t=nT s. If in the OFDM system the channel 

is divided into N subchannnels (subcarriers) and 

the transmitted/received signal is processed by 

N-point IFFT/FFT, then one block of N symbols is 

time-limited with approximate bandwidth 1 /NTs. 

One can sample H( t,f) with period 1/NTs, e.g., 

f=k/NT s
, to obtain 

H(n,k):=H (nT s,k/NT s)= ∑
L- 1

l=0
h(nT s,l)e

- j2 πlk/N (3)

where h(nTs,l) will be notated as h(n,l):=h 

(nTs,l) in following discussions.

  Without loss of generality, we use [h(n,l)] i, j 

to represent the l-th tap gain between the j-th 

transmit antenna and the i-th receive antenna. In 

order to simplify the analysis in our work, we 

need to make a few assumptions.

A1)　Each [h(n,l)] i, j is modeled as a WSSUS 

channel, E[h(n,l)] i, j[h(n,l
'
)]

*
i, j=E|[h(n,l)] i, j|

2

δ( l- l ').

Further using Clarke's two dimensional isotropic 

scattering model [12], the cross-correlation 

function between [h(n,l)] i, j and [h(n ',l')] i, j 

can be found as:

E[h(n,l)] i, j[h(n',l')]
*
i,j=

σ 2
l
δ( l- l ')J 0(2πf DT s|n-n'|)

       (4)

where σ 2
l 

 is the total power of the lth tap 

(derived from the power delay profile of the 

channel) J 0  is the zero order Bessel function of the 

first kind; fD=v/λ is maximum Doppler spread: v  

is the mobile's maximum velocity relative to the 

base station, λ is the wavelength of RF wave. 

Notice that the Doppler spread is a measure of 

time variations in the channel. The larger the 

value of f D , the more rapidly the channel changes 

with time.

A2)　The random matrices h(n,l)( l=0,1,⋯,L-1) 

have the Gaussian distribution with mean zero 

and covariance matrix R l,n⊗S l,n , i.e., {vecE

( ) 1c ( , ) }
R TM Mh n l ×= 0  and ( ) ( )( ){vec ( , ) . vec ( , ) }

H
E h n l h n l

, ,l n l nR S= ⊗ o r E{ [h(n, l)] i, j [h(n,l)]
*
i', j ' }= [R l,n] i, i'

[S l,n ] j, j' ( l=0,⋯L-1), where Rl,n and Sl,n are 

M R×M R
 receive and M T×M T

 transmit correla-

tion matrices at the l-th tap and time n, 

respectively. In the following we use the notation 

h(n,l)∼Ν(0,R l,n⊗S l,n) to denote that h(n,l) has 

matrix-variate Gaussian distribution. 

Remark 1: With the A2, the MIMO channel is 

said to be spatially correlated Rayleigh fading. If  

Rl,n and Sl,n are identity matrices, i.e., h(n,l)∼

Ν(0,I M R
⊗I M T

), the channel behaves spatially 

uncorrelated Rayleigh Fading [13, 16].

  If the antennas are arranged in a linear array, 

Rl,n and Sl,n are Toeplitz. The l-th tap h(n,l) can 

be factorized in a 'product' form [8, 13] as  

h(n,l)=R 1/2
l,nh w(n,l)(S

1/2
l,n )

T        (5)

where R1/2
l,nR

1/2
l,n=R l,n and S1/2

l,nS
1/2
l,n=S l,n; h w(n,l) 

is an M R×M T
 matrix with h w(n,l)∼ Ν(0,σ 2

l

( I M R
⊗I M T

)). Note that the σ 2
l
 s have been 

incorporated into the matrices h w(n,l).

A3)　The matrices Rl,n and Sl,n keep constant 

within one transmission block (e.g. for one 

OFDM symbol interval). The time index n is 

dropped henceforth, i.e., Rl=Rl,n and Sn=S l,n.

  Accordingly, the Eq. (5) can be rewritten as 

h(n,l)=R
1/2
n h w(n,l)(S

1/2
n )

T       (6)

That is, according to Eq. (6), the time-varying 

and spatial correlation information of h(n,l)  

have been sufficiently incorporated into i.i.d. 

matrices h w(n,l) and antenna correlation matrices 

Rl and Sl , respectively. Hence, we say the chan-

nel is modeled as an independent time-varying 

(frequency-dispersive) and spatially correlated 

channel. Its time-space correlation function is said 

to be separableand following from Eq. (4), is 

obtained as,
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and
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Remark 2: It is well known that the channel 

spatial correlation is relevant to the angle spread 

and antenna spacing. According to hardware 

design, the antenna spacing is a constant. On the 

other hand, since the angle spread changes much 

more slowly than the channel itself, it is practical 

to assume that the angle spread keep constant 

within a transmission block. Hence, it is reasonable 

in making the assumption 3. The similar assump-

tion is used in several models, for instance, the 

virtual representation model in [21], discrete-time 

model in [22] and a generalized model in [23]. 

  Assume that each scatter cluster has a mean 

angle of departure from the transmit array and a 

mean angle of arrival at the receive array denoted 

as θ
T, l

 and θ
R, l

, respectively, a cluster angle 

spread as perceived by the transmitter σ 2
θ
T, l

, a 

cluster angle spread as perceived by the receiver 

σ 2
θ
R, l

. The relative normalized transmit and 

receive antenna spacing is denoted as Δ
T=d T /λ 

and Δ
R=d R /λ, respectively, where dT and dR 

stand for the absolute antenna spacing. Hence, the 

correlation matrices Rl and Sl are given by(see, 

e.g., [8] and references therein),

[ ] ( ),,,
( ) , ,

R ll R R lm n
R n m θζ θ σ= − ∆ , [ ] ( ),,,

( ) , ,
T ll T T lm n

S n m θζ θ σ= − ∆  (9)

where ( ) 21
2, , exp[ 2 cos( )] exp[ (2 sin( ) ) ]s j s sθ θζ θ σ π θ π θ σ∆ ≈ − ∆ ⋅ − ∆  

is defined as the fading correlation between two 

antenna elements spaced sΔ  wavelength apart.

Ⅲ. System Model

  Based on the channel assumption in Sec. II, we 

shall introduce the space-frequency coded MIMO- 

OFDM system model (Fig. 1) in this section. The 

Fig. 1. Block Diagram of System Model

information bits are first encoded by the space- 

frequency encoder. Define its output C=[c
T
0,⋯,

c TN-1 ]
T  where c k=[c 1

k,⋯,c
M T

k ]T  with c ik  de-

notes the transmitted symbol from the i-th antenna 

on the k-th tone [6] and N denotes the number of 

subcarriers. Here, the space-frequency encoder 

consists of one inner encoder and one outer encoder 

(for detail information, refer to [8, 24] and refer-

ences therein). In this paper, the energy of c ik  is 

normalized to unit. 

  After OFDM demodulation the observed data 

vector R=[r
T
0 ,⋯,r

T
N-1 ]

T
=[r

1
0,⋯,r

MR
0 ,…,r

1
N-1 , 

⋯,r
M R

N-1 ]
Tis given by [5, 11]

R= E sGC+Z (10)

where Es is an energy normalization factor G=

F
(Rx)
HF

(Tx)H is an NMR×NMT matrix with 

F
(Rx)

=F⊗IMR, F
(Tx)

=F⊗IMT and H is a block- 

circulant matrix defined in Eq. (11) with the 

inner block matrix h(n,l), Z is the equivalent 

complex-valued AWGN vector with zero mean

E{Z}= 0 NM R×1
 and variance matrix E{ZZ H}

= σ 2
nI NM R

. Here we denote Z=[z
T
0,⋯,z

T
N-1 ]

T 

with z k=[c 1
k,⋯,c

M R

k ] T . For the OFDM system, 

we assume that a cyclic prefix of length equal to 

channel memory is inserted in each transmission 

block to eliminate inter-symbol interference.

(0,0) 0 (0,2) (0,1)
(1,1) (1,0) (1,3) (1,2)

( , ) ( , 1) 0 0

( 2,0) 0
0 0 ( 1,1) ( 1,0)

h h h
h h h h

h L L L L

h N
h N h N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

H

L

L

M M M M M

M

M M M M M

M M M

L
 (11)

  If we consider an individual received vector r k, 

we find 
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r k= E sG k, kc k+ E s ∑
N- 1

m=0
m≠k

G k,mc m+z k   (12)

where Gk,m is the (k,m)-th block-entity of matrix 

G and is given by

1 1
2 ( ) / 2 /1

,
0 0

1
2 ( ) /1

0

( ; )

( , )

N L
j n m k N j ml N

k m N
n l

N
j n m k N

N
n

h n l e e

H n m e

π π

π

− −
− −

= =

−
−

=

=

=

∑ ∑

∑

G

(13)

  That is, the time varying channel destroys the 

orthognality between subcarriers and gives rise to 

ICI (i.e., the second term in Eq. (12)) after the 

FFT process at the receiver. For a detailed 

discussion on ICI in the MIMO-OFDM system, 

the interested reader is referred to [11]. However, 

from the input-output relationship (10), we 

observe that each transmitted data vector c k  is 

included in all N received vectors ( r 0,r 1,⋯,r N- 1
), 

sothe system creates many replicas of each 

transmitted data vector at the receiver end. 

Therefore, from another point of view, the time 

varying channel provides time diversity.

  We assume the receiver has perfect channel 

knowledge while the transmitter has no channel 

knowledge. The maximum likelihood (ML) deco-

der computes the vector sequences C̃= [c
1
0
˜,⋯,

c
MT
0̃ , …,c1N-1̃,⋯, c

MT
N-1 ]

T˜  according to 

arg min sE= −
C

C R GC%
.     (14)

  It is noticed that there is no ICI if an ML 

decoder is properly chosen. The ICI analysis will 

be skipped, therefore.

Ⅳ. Diversity Analysis

  In this section, we derive the pairwise error 

probability (PEP) upper bound for space-frequency 

code taking into account the channel model in-

troduced in sec. II, and then quantify the max-

imum diversity order. 

  Assume that C  and E  are two different space- 

frequency codewords. Assuming equal transmitted 

power at all transmitter antennas and ideal 

channel state information at the receiver, using 

the Chernoff bound, the PEP of transmitting C 

and deciding in favor of another codeword E at 

the ML decoder is upper bounded by [1]

P(C→E|G)≤exp(-E s/4σ
2
n∥Y∥

2
) (15)

where Y=G(C-E)  is an NM R
-dimensional vector. 

To continue further analysis, we first make the 

following observation.

  Fact 1: The elements of matrix G have Gauss-

ian distribution.

  Proof: According to Assumption 2, the inner 

block matrices h(n,l) of H in Eq. (13) are 

complex Gaussian with mean zero and then H is 

Gaussain with mean zero. With G=F (Rx)HF (Tx)H, 

we conclude that G is Gaussian with mean zero 

as well.

  Now, with Fact 1, Y is a Gaussian random 

vector with mean zero. We define the covariance 

matrix of Y as C Y=E {YY H} and denote r(CY)  

and λ
i(CY) ( i=1,⋯,r(CY)) as the rank and 

eigenvalues of CY, respectively. Next, averaging 

Eq. (15) over the random channel G, we obtain [8]

P(C→E)=E{P(C→E|G)}

≤ ∏
r (C Y)

i=1

1

1+E s/4σ
2
n
λ
i(C Y )

.      (16)

We derive (see proof in appendix)

C Y=1/N 2Ψ( J⊗Q)Ψ H .       (17)

Define Ψ= (Ψ 0⊗I M R
,⋯,Ψ N- 1⊗I M R

) with size

NM R×N
2
M R

 where Ψ
n
 are N×N inner block 

matrices with elements [Ψ n ] i, j= e
- j πn( i- j)/N,

i,j,n=0,⋯N-1; J is an N×N matrix with 

elements [ J] i, j= J 0 (2πfDTs|i-j|). The NMR× NMR 

matrix Q= ∑
L- 1

l=0
σ 2
l[D lX

T
S lX

*
D

*
l]⊗R l

 with l-th 
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tap power σ 2
l
, Dl=diag (1,⋯, e

- j2 πl(N-1)/N)  

and the MT×N pairwise error codeword matrix

X=[X 0,X 1, ⋯XN-1] with column vectors Xn=

[c
1
n-e

1
n, ⋯,c

M T

n -e
M T

n ] T , i.e., vec( )X = −C E . The 

Eq. (17) is the key result of this paper.

  In this section we focus on the high SNR 

regime, i.e., E s/4σ
2
n≫1 . Then, it follows from 

inequality Eq. (16) that 

( )2

( ) 1( )
1

4
0

( ) ( )
YY

s

n

r Cr C
E

i Y
i

C
σ

λ
−−

−

=

→ ≤ ∏P C E
.      (18)

According to the definition in [1] and Eq. (18), 

the diversity order achieved by the space- 

frequency code is provided by the minimum rank 

of CY, i.e., r(CY) over all codeword pairs {C,E}, 

while the coding gain is defined as the minimum 

of [ ∏
r (C Y)

i=1
λ
i(C Y )]

1
r(C Y)  .

Diversity order: Following the fact ΨΨ H=N 2
I NMR 

in Eq. (17), we obtain r(Ψ)=NMR. Let us next 

set Ψ=N.UΛV  where Λ=[ I NM R
:0]  , U and V 

are NMR×NMR and N 2
MR×N

2
MR unitary matrices, 

respectively. We further set J⊗Q=A△BH, where △  

is an N 2MR×N
2MR diagonal matrix containing the 

eigenvalues of J⊗Q, A and HB  are N 2
MR×

N
2
MR unitary matrices. With these definitions, 

we then rewrite CY as 

( ) ( )H H T H
YC U V B V U= Λ Α ∆ Λ .      (19)

  Now, we can obtain the rank of CY as r(CY)

= min(r(Λ),r(△))= min(r(Ψ),r(J⊗Q)). Using the 

property of Kronecker product r( J⊗Q)= r(J).

r(Q), we finally determine r(CY)=min (NMR,

r( J).r(Q)).

  According to [8] we have known that r(Q) is 

affected by the transmitted codewords, the 

correlations of transmit and receive antennas and 

the number of frequency-selective channel paths, 

and its upper bound is found as r(Q)≤LMRMT.  
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Fig. 2. Effects of Doppler Spread on the Rank of J and 
Time Diversity Order

In the following, in order to keep the presen-

tation simple, we assumethe number of OFDM 

subcarrier N≥r(J)LMT. Hence, r(J).r(Q)≤NMR 

and we can obtain the total diversity order as

r(CY)=r(J)⋅r(Q).            (20)

Eq. (20) declares the linear relationship between 

the total diversity order achieved by the space 

frequencycode over the doubly-selective channel, 

i.e., r(CY) and the total diversity order achieved 

over the time-selective channel [8], i.e., r(Q). As 

the term r( J) is sufficiently determined by Doppler 

spread and the number of OFDM subcarriers, we 

define it the maximum time diversity order in this 

paper. It is shown in Fig. 2 that as the normal-

ized Doppler spread increased, the channel be-

comes time-selective and the time diversity, i.e., 

r( J)  tends to be increased correspondingly. 

  Whereas, for SISO channel, [14] has defined 

the time diversity order as 2⌈TfD⌉+1(see also 

Fig. 2.) with the signal duration T( T=NT s) and 

Doppler spread f D . And it is declared that the 

relatively small Doppler-spread encountered in 

practice could be even leveraged into significant 

diversity gains. Compared with the SISO case, the 

time diversity order with r( J) turns to be saturated 

as the Doppler spread is increased continually, 

namely, r(J)≤N.

Remark 3: From Eq. (20) we observe that the 

achievable time diversity order, i.e., r( J) is 

independent with r(Q). Thus the conclusions on 
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r(Q)  in work [8] can be directly applied to our 

work. The key points of these conclusions include 

that space-frequency coding approach can exploit 

both frequency diversity and spatial diversity in 

MIMO-OFDM systems. Nevertheless, we don't 

say the matrix J is independent with the system, 

since it is derived based on the space-frequency 

coded MIMO-OFDM under our channel assump- 

tions.

Coding gain: Following from Eq. (19) and Eq. 

(20), we observe that the eigenvalues of r(CY), 

λ
i(C Y)=λ i(J⊗Q), i.e., the nonzero elements of 

iagonal matrix △ in Eq. (19). We write λ
i(CY)

=λ u(J)λ w(Q), i=1,⋯,r(CY), u= 1,⋯,r( J)  and 

w=1,⋯,r(Q), where λ
u(J) and λ

w(Q) are the 

eigenvalues of matrix J and Q, respectively. We 

decompose the coding gain

( ) ( ) ( )1/ ( ) 1/ ( ) 1/ ( )( ) 1 ( ) 1 ( ) 1

0 0 0
( ) ( ) ( )

Y
Y

r C r rr C r r
i Y u wi u w

Cλ λ λ− − −

= = =
= ⋅∏ ∏ ∏

J QJ QJ Q

(21)

  Now, in the above equation, we observe that 

the latter decomposed term happens to be the 

coding gain discussed in [8], whereas, the former 

one is the contribution for the coding gain 

introduced by the time-varying channel, and it is 

definitely determined by the Doppler spread. 

Following from the arithmetic-geometric mean 

inequality [17], we obtain the upper bound as

( )
( ) 11/ ( )( ) 1 1

( ) ( )0
0

Tr( )

( ) ( )
rrr N

u ur ru
u

N

λ λ
−

−

=
=

=

≤ =∑∏
JJJ

J J

J

J J
14243

. (22)

  So far, it is difficult to further quantify the cod-

ing gain. 

  In this section, we conclude that the maximum 

diversity order achieved by space-frequency code 

under the spatially correlated doubly-dispersive 

Rayleigh fading channel is r(CY)=r(J).r(Q), 

where r( J) is fully determined by the Doppler 

spread and N, and r(Q)≤LMRMT incorporates 

the frequency and spatial diversity, respectively. 

As this paper considers the high SNR case, it is 

noted that the total diversity order has the 

dominating contribution to improve the perfor- 

mance. Next, recall that our results are derived 

with the ML(optimum) decoding assumption. In 

fact, the ML decoding is not realistic for a space- 

frequency coded MIMO-OFDM system due to its 

extreme computation complexity. Generally, sub- 

optimum decoding, for instance, MMSE equal- 

izer can be employed to reduce the complexity, 

though leading to some time diversity loss. 

Therefore, our result is the upper bound of the 

full diversity order offered by our space-frequency 

coded MIMO-OFDM transmissio

Ⅴ. Simulation Results

  In this section, we present simulations to test 

the diversity provided by the doubly-selective 

MIMO channels. Compared with the results in 

[8], the impact of time diversity on the system-

performance is especially discussed in this exam-

ple. We simulated system with the channel model 

described in sec. II, in which we select MR=

MT=2, N=128 , f c=900MHz . With the max-

imum mobile velocity v=168km/h, the maximum 

Doppler spread is fD=140Hz , L=4 with σ 2
0=

σ 2
1= σ

2
2= σ

2
3=1/4 . As the average energy of 

the transmit symbols is assumed to be 1, the sig-

nal to noise ratio at each received antenna is de-

fined as SNR=10log10(M TE s/σ
2
n)←. And each 

point of the curve of OFDM symbol error rate is 

averaged over 2,000 channel realizations.

  For the space-frequency encoder, we employ 

the 16-states 4-PSK space-time trellis code pro- 

posed in [1] as inner code, and the outer code 

A t
 in [24] with dimension N×N/2. We assume 

channel state information is required at the 

receiver. Due to the high complexity, we avoid to 

use the ML decoding. An MMSE equalizer is 

adopted after the OFDM demodulation, and 

then the viterbi decoder is applied to decode 

the space-time trellis code. Here, we point out that 

the MMSE is not able to collect the full diversity 

order.
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  To see the spatial correlation effect, we use three 

spatially correlated channel cases: no antenna 

correlation (i.i.d.) channel, receiver-correlation- 

only ( Sl is identity) channel by generating Rl with 

Δ
R=0.2, θ

R, l=π/4 and σθ
R, l
=0.250; transmit- 

correlation-only channel ( Rl is identity) by ge-

nerating Sl with Δ
T=0.5 , θ

T, l= π/4 and σθ
T, l

=0.25 , respectively. 

  In order to test the time-diversity quantified by 

r( J), we compare the performance of two cases: 

r( J)=4  and r( J)=7 . According to the curve of 

r( J) vs. normalized Doppler spread (NDS) in Fig.2, 

we select Ts properly with Ts=NDS/ (NfD ). In 

this simulation, 3×10
- 5  and 9×10

- 5  are chosen 

for Ts corresponding to r(J)= 4 and r( J)=7, 

respectively.

  We draw the curves of OFDM symbol error 

rate vs. SNR in Fig. 3. It is shown that, the spa-

tial correlation decreases the system performance 

and i.i.d. channel offers the best performance 

among the three spatial cases. The case of trans-

mit-correlation-only has better performance over 

the case of receive-correlation-only. The asymme-

try is introduced via different transmit and receive 

antenna spacing for the cases of transmit-correlation- 

only and receive-correlation-only, respectively.

  As expected, for a certain spatial correlation case, 

better performance is achieved with the time 

diversity r( J)= 7 than that with r( J)=4. Observing 

the slope of the curves in Fig. 3, we find that 

1 3 5 7 9 11 13 15 17 19

10-3

10-2

10-1

SNR(dB)

O
FD

M
 S

ym
bo

l E
rro

r R
at

e

i.i.d. with r (J)=4
i.i.d. with r (J)=7
TX corr. only with r(J)=4
TX corr. only with r(J)=7
Rx corr. only with r(J)=4
Rx corr. only with r(J)=7

Fig. 3. OFDM symbol error rate vs. SNR 

the diversity contributes especially in high SNR 

cases. Sharper slope happens to the case of r( J)

=7, while SNR begins from 6dB for i.i.d chan-

nel, 12dB for transmit-correlation-only channel and 

14dB for receive-correlation-only channel, respec-

tively. Note that due to the MMSE equalizer, 

some interference is introduced and some time di-

versities are lost as well. Thus, the time diversity 

orders shown in Fig.3 may not be the exact val-

ues as 7 or 4. However, from their curve slopes, 

we also can make some insights for quanti-

fications. For instance, as the OFDM symbol error 

rate is 0.5×10
- 3 , there is at least 2dB perform-

ance difference between the cases with r( J)=7  

and r(J)= 4.

Ⅵ. Conclusions

  The maximum diversity order is developed for 

the space-frequency coded MIMO-OFDM over 

spatially correlated doubly-dispersive Rayleigh 

channel. By deriving the PEP upper bound, we 

quantify the maximum diversity order and give 

the expression of coding gain. The impact of 

channel time-selectivityon the system performance 

is particularly studied. A novel definition of time- 

diversity in MIMO-OFDM systems is pro- posed. 

Such time-diversity is independent with the fre-

quency diversity and space diversity achieved by 

the space-frequency coded MIMO-OFDM in fre-

quency-selective channe.

APPENDIX

  According to the block-matrix [G] k,m  given in 

Eq. (13), we rewrite G 

1 1
1

0 0

1 1
1

0 0

1 1
1

0 0

( ) ( , )

( )( ( , ))

( ) ( , )

R

R

N L

n lN
n l

N L

n M lN
n l

N L

n M lN
n l

D h n l

I D h n l

I D h n l

− −

= =

− −

= =

− −

= =

= Ψ ⊗

= Ψ ⊗ ⊗

= Ψ ⊗ ⊗

∑ ∑

∑ ∑

∑ ∑

G

     (25)

where Ψ
n
 is an N×N  matrix with the elements 

[Ψ n ] i, j= e
- j πn( i- j)/N , for i,j,n=0,⋯,N-1 
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and Dl=diag(1,⋯,e
- j2 πl(N-1)/N

). In Eq. (25) 

we write

{ }

1 1 1 1
2 / 2 ( 1) /

0 0 0 0

( , ) diag{ ( , ) , ( , ) , , ( , ) }

diag ( ,0), ( ,1), , ( , 1)

L L L L
j l N j l N N

l
l l l l

D h n l h n l h n l e h n l e

H n H n H n N

π π
− − − −

− − −

= = = =

⊗ =

= −

∑ ∑ ∑ ∑L

L

(26)

Define X=[X 0,X 1,⋯XN-1] with column vectors 

Xn=[c
1
n-e

1
n,⋯,c

MT
n -e

MT
n ]

T , i.e., vec( ) = −X C E . 

And rewrite the vector Y in Eq.(15) as

{
1

1

0

( )

( ) diag ( ,0), ( ,1), ,
R

N

n MN
n

I H n H n
−

=

= −

= Ψ ⊗ ⋅∑

Y G C E

L

} 0 1 1( , 1) [ , , , ]T T T T
NH n N X X X −− L

0

1
11

0

1

( ,0)
( ,1)

( )

( , 1)

R

N

n MN
n

N

H n X
H n X

I

H n N X

−

=

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= Ψ ⊗
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

∑
M

 (27)

For easy expression, we make the notation

0

1

1

( ,0)
( ,1)

( , 1)

n

N

H n X
H n X

H n N X −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

H
M

.

Hence Eq. (27) can be written as Y=1/N

∑
N- 1

n= 0
(Ψ n⊗I M R

)H n
. We can easily find that

' '
'

' '
'

1 1
1 1

0 0
1 1

2
0 0

( ) ( )

1 ( ) ( )

R R

R R

N N
H H H

n M n MN N n n
n n

N N
H

n M n Mn n
n n

I I

I I
N

− −

= =

− −

= =

= Ψ ⊗ Ψ ⊗

= Ψ ⊗ Ψ ⊗

∑ ∑

∑ ∑

YY H H

H H .   (28)

Next, the covariance matrix of Y is (note { }E =Y

10
RNM × ), 

' '
'

1 1

2
0 0

1{ } ( ) { }( )
R R

N N
H H

Y n M n Mn n
n n

C E I E I
N

− −

= =

= = Ψ ⊗ Ψ ⊗∑ ∑YY H H
.(29)

Here, 

'

0

1 ' ' '
0 1 1

1

( ,0)
( ,1)

{ } ( ,0), ( ,1), , ( , 1)

( , 1)

H H H H H H H
n Nn

N

H n X
H n X

E E X H n X H n X H n N

H n N X

−

−

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎡ ⎤= ⋅ −⎨ ⎬⎣ ⎦⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪−⎢ ⎥⎣ ⎦⎩ ⎭

H H L
M

.

(30)

  In the above Equation, the (i,j)th block matrix 

is given by E{H (n, i)X iX
H
j H

H(n',j) } .

'

'

1 1
' 2 / ' ' 2 /

0 0

{ ( , ) ( , )} ( , ) ( , )
L L

H H j li N H H j l j N
i j i j

l l

E H n i X X H n j E h n l e X X h n l eπ π
− −

−

= =

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
⎧ ⎫

∑ ∑

( ) ( )1 1 1 1
2 2 2 2

1
2 / ' 2 /

0
( , ) ( , )

L T Tj li N H H j l j N
l w l i j l w l

l
E e R h n l S X X S h n l R eπ π

−
−

=
Γ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
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∑

144424443

1
22 / '( , ) ( ,j li N H

l w we R E h n l h n lπ−= ⋅ Γ{ } 1
2

1
2 /

0
)

L
j l j N

l
l

R e π
−

=

⋅∑
(31)

Following from Eq. (8), we obtain,

{ }' 2 '
0 ,

1
( , ) ( , ) (2 | |) [ ]

R

MR

M
H

w w l D s s s
s

E h n l h n l J f T n n Iσ π
=

⎛ ⎞
Γ = − ⋅ Γ ⋅⎜ ⎟

⎝ ⎠
∑

.

(32)

Denote α
p, q=[ (S 1/2

l )T] p, q , p,q=1,⋯,MT. 

* *
, , , , ,

1 1 1 1 1 1 1

* * *
, ,

1 1 1 1

[ ] ( ) ( )

( ) [ ] ( ) [ ]

T T T T T T T

T T T T

M M M M M M M
p q p q

s s s p i j q s i j q s s p
s s p q p q s

M M M M
p q T p q T
i j l q p i j l p q i l j

p q p q

x x x x

x x S x x S X S X

α α α α
= = = = = = =

= = = =

Γ = =

= = =

∑ ∑ ∑∑ ∑∑ ∑

∑∑ ∑∑

(33)

With the aid of Eq. (32) and Eq. (33), we further 

simplify Eq. (31) as 

1 1
2 2

1
' 2 ' 2 / * 2 /

0
0

1
' 2 2 / * 2 /

0
0

scalar

{ ( , ) ( , )} (2 | |)

(2 | |)

L
H H j li N T j l j N

i j l D s l i l j l
l

L
j li N T j l j N

D s l i l j l
l

E H n i X X H n j J f T n n e R X S X R e

J f T n n e X S X R e

π π

π π

σ π

π σ

−
−

=

−
−

=

= − ⋅ ⋅

= − ⋅

∑

∑ 14243

(34)

Thus, according to Eq. (34), we simplify the Eq. 

(30) which is written as  

{ }'
1

' 2 * *
0

0

(2 | |) ( )
L

H T
n D s l l l l ln

l

E J f T n n D X S X D Rπ σ
−

=

= − ⊗∑H H
.

 (35)

The covariance matrix of Y can be obtained finally 

and rewritten in a compact matrix form 

{ } 2

1 ( )H H
YC E

N
= = Ψ ⊗ ΨYY J Q

      (36)

where Ψ= (Ψ 0⊗IMR,⋯,Ψ N-1⊗IMR)  with size

NMR×N
2
MR; Q= ∑

L- 1

l=0
σ 2
l[D lX

T
S lX

*
D

*
l]⊗R l

 with 

l-th tap power σ 2
l
; J is an N×N matrix with 
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elements [J] i, j= J 0 (2πfDTs|i-j|) for i,j=0,⋯,

N-1. 
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