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요   약

직렬 합성(composition)과 병렬 합성(XOR)은 암호 스킴의 안 성을 높이기 해 리 사용되고 있는 방법이다. 랜

덤 순열을 직렬 합성하는 회수가 많아질수록 보다 안 한 랜덤 순열이 되고, 병렬 합성하는 회수가 많아질수록 보다 

안 한 랜덤 함수가 된다. 이 두 가지 방법을 결합해서, 본고는 다음과 같은 일반화된 형태의 랜덤 함수를 정의한다: 

  ∘⋯∘  ⊕⋯⊕∘⋯∘. 여기서,  ⋯ 는 랜덤 순열이다. 랜덤 순열의 총 개

수가 고정되어 있을 때, 직렬 합성과 병렬 합성을 각각 얼마만큼 하느냐에 따라  함수의 안 성은 달라질 것이다.

임의의 두 암호 스킴의 안 성을 엄 히 비교하기 해서는 각각의 정확한 안 성 값을 상으로 해야 한다. 

그러나, 일반 으로 정확한 값이 알려진 경우는 거의 없다. 특히, 매개변수(  함수의 경우, s, c)의 값이 작을 경

우는 계(tight bound)가 알려져 있는 경우가 종종 있으나, 일반 인 매개변수에 해서는 정확한 값이나 계가 

알려진 경우가 거의 없다. 그래서, 실제 상황에서는 두 암호 스킴의 안 성 비교는, 각각의 불안 성(insecurity)의 

상계(upper bound)를 비교함으로써 이루어진다. 안 성을 요시 하는 상황에서는 더 낮은 상계를 갖는 암호 스킴

을 선호하게 된다.     의 불안 성은 기존의 여러 결과들을 조합해서 계산할 수 있다. 따라서, 특정 

    에 한 두 함수의 안 성은 각각의 불안 성의 상계값을 계산함으로써 비교될 수 있다. 본고는 일

반 인 (s, c)에 한    의 불안 성의 상계값의 변화를 알아보고자 한다. 그리고, 보다 낮은 상계값을 

얻기 한 직렬/병렬 합성의 최 의 개수가 무엇인지 조사한다.
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ABSTRACT

Both composition and XOR are operations widely used to enhance security of cryptographic schemes. The 

more number of random permutations we compose (resp. XOR), the more secure random permutation (resp. 

random function) we get. Combining the two methods, we consider a generalized form of random function: 

     ∘⋯∘      ⊕⋯⊕ ∘⋯∘  where  ⋯  are random permutations. Given a fixed 

number of random permutations, there seems to be a trade-off between composition and XOR for security of 

   . We analyze this trade-off based on some upper bound of insecurity of    , and 

investigate what the optimal number of each operation is, in order to lower the upper bound. 
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Ⅰ. Introduction

Composition and XOR operations are important 

tools in cryptography to enhance security. They are 

used either individually or together in various forms.

Since composing random functions usually weak-

ens security, we will deal with composing random 

permutations. Composition of random permutations 

has been studied mainly related to block ciphers. 

One way to measure the security of a block cipher 

is to do its security as a random permutation. Some 

of the results show that composition of random per-

mutations produces a more secure random permu-

tation. Especially, Vaudenay
[5] did by proposing the 

decorrelation theory. The theory has been a useful 

tool to measure or compare securities of block ci-

phers against other attacks as well as against chosen 

plaintext attack.

A basic form of XOR-ing random functions (resp. 

permutations) is   ⊕ ⋯ ⊕    for independent 

random functions (resp. permutations) ⋯  . This 

results in a random function regardless of whether 

its constituents are random functions or 

permutations. For the XOR of independent random 

functions, the security has not been precisely ana-

lyzed, however, it does not seem to amplify security. 

Myers[4] proposed its variant and proved that it am-

plifies security. More precisely, if ⋯  are in-

dependent uniform random bit strings and ⋯  

are independent random functions, then  ⊕ 

⊕ ⋯ ⊕ ⊕   is a random function stronger than 

each component random function. As a way to build 

a secure random function from random permuta-

tions, Lucks
[1] considered XOR-ing independent ran-

dom permutations, and analyzed the security.

The more number of random permutations we 

compose (resp. XOR), the more secure random per-

mutation (resp. function) we get. Considering that a 

random permutation itself can be used as a random 

function, an immediate question can be, `Which 

method produces a more secure random function?' 

Since random permutations do not resist birthday at-

tack, if one has to select only one method, they will 

probably prefer XOR. Thus, a next question can be, 

`Is it more useful to combine the two methods?' 

This question was initially asked in view of security, 

however, there is another aspect: without parallel 

computation, using composition makes the resultant 

random function more efficient. There seems to be 

a trade-off between the two operations. Given a 

fixed number of random permutations, an increase in 

the number of compositions means XOR-ing a 

smaller number of random permutations that are 

more secure than the original ones.

Our goal is to provide as clear (and quantitative) 

as possible answers to the above questions by ana-

lyzing the previous results. To do so, we first define 

a random function

   ∘⋯∘ ⊕

                   ⋯⊕∘⋯∘,

where sc=m and ⋯  are random permuta-

tions on  . Note that the latest results on the 

composition and XOR of random permutations are 

Vaudenay's in 1998
[5] and Luck's in 2000[1], 

respectively. Considering that no better result has 

appeared in both areas at least for the last five 

years, we based on their results upper bound the in-

security of     in terms of decorrelation 

theory.

For a random function, its decorrelation bias rep-

resents the distinguishability from the uniform ran-

dom function. The upper bound, denoted 

       , on the decorrelation bias 

of      is determined by the function 

parameters n, s, c the security of  , and the adver-

sary resource d.

Let f and g be random functions such that 

       . Such an in-

equality has played an important role in many cases 

of comparing their securities or selecting one of 

them, although it does not guarantee that f is more 

secure than g. For instance, Moriai and Vaudenay[3] 

made use of those upper bounds in order to compare 

several types of block ciphers. They compared the 

securities by the computational cost of each scheme 

necessary for a specific level of security, more ex-
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actly, for the upper bound to be less than some 

value.

In this work, we find the relation between s and 

c on          according to the 

general behavior of n, d, m, and the security of  .

Ⅱ. Preliminaries

Let  be the set of all real numbers, and   the 

set of all composite, positive integers. Let  

    be the set of all n-bit strings. For reals a<b, 

let      ∊   ≤≤  ,      ∊

        ,     ∊   ≤    , 

and     ∊      ≤  . For a sequence 

of random variables, i.i.d. is the abbreviation for 

“independent and identically distributed”.

Definition 1. A continuous function     →

is called convex if for any distinct points   and   

in [a, b] and for any  ∊   ,

 ≤  
If the inequality is strict for all  , and , then 

f is called strictly convex.

Definition 2. A random function f from  to  

is a random variable which takes as values functions 

from  to  . If f takes only permutations with 

m=n, it is called a random permutation on .

Definition 3. If a random function (resp. random 

permutation) has the uniform distribution over all

functions from  to   (resp. over all permuta-

tions on ), it is called the uniform random function 

(URF) (resp. uniform random permutation (URP)) 

and denoted by →  (resp.  ).   

means → .

For a security model for random functions, we 

consider an adaptive version of the Luby-Rackoff 

model, in which the number of adversary's queries 

to an oracle is bounded.

Definition 4. Given two random functions f and 

f', let an oracle O simulate either f or f'. A q-limited 

distinguisher for f and f' is a computationally un-

bounded Turing machine   that outputs either 0 or 

1 after a limited number q of interactive queries to O.

The distinguishability between two random func-

tions, f and f', is quantified by the maximal advant-

age over all q-limited distinguishers D as:

  max 
      .

The decorrelation theory is a set of mathematical 

tools which aims at studying and defining the se-

curity of block ciphers in the Luby-Rackoff model. 

Definition 5. Given a random function f from  

to   and an integer d, we define the d-wise dis-

tribution matrix   of f as an   × 

-matrix where 

the (x, y)-entry of  corresponding to the mul-

ti-points  ⋯   ∊ 

  and  ⋯ 

∊   is defined as

       for all ≤≤ 
Definition 6. Given two random functions f and 

f' from  to  , a positive integer d, and a matrix 

norm ⋅  over the   × 

-matrix space 


 ×


, 

we define the d-wise decorrelation ⋅-distance 

between f and f' as

⋅      
  

Here, if f' is the URF, the distance is denoted by 

⋅  and called d-wise decorrelation bias of 

function f. Similarly, if f is a random permutation 

and f' is the URP, the distance is denoted by 

⋅  and called d-wise decorrelation bias of 

permutation f.

By defining a new matrix norm ⋅ , Vaudeny 

linked the decorrelation distance between two ran-

dom functions to the maximal advantage of 

distinguisher.
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Lemma 1[6]. For any random functions f and f', 

and any positive integer d, we have

⋅    ⋅
  

From now on, this paper will use only ⋅ as 

a matrix norm associated with decorrelation dis-

tance. Thus, we will simply write ,  , and 

  instead of ⋅ , 

⋅ , and ⋅ , 

respectively.

Ⅲ. A Random Function and Its Security

When combining XOR and composition oper-

ations, we can think in two ways: XOR-ing after 

composing and composing after XOR-ing. Both 

ways produce random functions from random per-

mutations, but we will consider only the former be-

cause composing random functions usually dimin-

ishes security.

Definition 7. For positive integers c and s, and 

for i.i.d. random permutations ⋯  on , we 

define a random function    from  to 

 as follows:

    ∘⋯∘ ⊕

                  ⋯⊕∘⋯∘.

In order to get the security of     , 

we use the following results.

Lemma 2
[5]

. For any i.i.d. random permutations 

⋯ ,

∘⋯∘≤ .
Lemma 3

[1]. Let ∗ ⋯ 
∗
  be independent URPs 

on . For any ≤  ,

 ∗ ⊕⋯⊕
∗
 ≤ 

  ≤   

.

For feasible handling, we use a simpler form of 

alternative to the above boundary formula:



  ≤  
≤ 

   
.

Note that the above two terms behave almost in 

the same way.

In order to get the security of ⊕⋯⊕ when 

not every   is uniform, the following lemma is 

used.

Lemma 4. For independent random permutations 

⋯  ⋯  on ,

 ⊕ ⋯⊕⊕ ⋯⊕ ≤
  



       

From the above three lemmas, we have the fol-

lowing result.

Theorem 5. For positive integers c and s, let 

⋯  be i.i.d. random permutations on . 

Using them, define      as in Definition 

7. Then, for any ≤  ,

      

≤      
 







Ⅳ. Trade-off between Composition and XOR

Let m=sc be the number of i.i.d. random permu-

tations, and  the d-wise decorrelation bias of them. 

Let          denote the upper 

bound of        in Theorem 5. 

Then, it is expressed as    

     




 

⋅ 







. Define a 

function f as

        

 












.

The following lemma shows that f has a nice 

property in some domain of interest.

Lemma 6. For any  ∊ ∞   ∊   
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 ∊    , and ∊ ∞  ,        is a 

strictly convex function in ∊    .

4.1 Composition versus XOR

First, we compare    and  

. By a straightforward calculation, we obtain 

∊   , determined by (n, d, m), such that 

    if and only if   

         .

Theorem 7. Define   and  as  



  



 




  
 ;       if 

  ≥ , and the root of   

   in     otherwise. For any 

 ∊ ∞  ∊    , and ∊    ,

             

for all    ;

            

for   ;

             

for all     .

When m is a prime number, the only comparable 

forms are      and     . 

From now on, we focus on composite numbers m. 

For any of such m's, there exists at least one factor 

(other than the trivial factor 1) of m not greater than 

 . The following theorem shows that, in most 

cases of (n, d, m),       

       for all factors c 

of m such that   ≤  regardless of the value 

of  .

Theorem 8. For any  ∊ ∞  ,  ∊     

(resp.  ∊    ),  ∊    , and 

∊     (resp. ∊    ),      

        for all ∊   .

Proof. For  ∊ ∞   ∊     ∊

   , and ∊    , define     

              . We will 

show that         for all  ∊   ∞, 

 ∊     (resp.  ∊    ),  ∊

   , and ∊     (resp. ∊    ).

Then, to combine this with Lemma 6 gives the 

desired results. By a straightforward calculation, we 

have the slopes of   for each , ,   as follows. 

For all  ∊ ∞  ∊    ∊      , 

and ∊    , (a) 


       ; (b) 



       ; (c) 



       . 

Since   
  ≤  for all ≥ , the 

theorem statement is obtained by the following due 

to (a), (b), and (c):          and 

         for all ≥ .  ■

4.2 Optimal Number of Compositions

Theorem 8 says that composition helps XOR to 

lower       either when 

≤≤  and ≤≤  or when    ≤    

and ≤≤ . Then, what is the number of com-

positions to obtain the minimum value for these (d, 

m)'s? This number occurs at every factor of m be-

tween the second smallest one and m. This section 

analyzes concretely how the optimal number of 

compositions is related to   , from which 

the optimal number of XORs follows immediately 

due to m=sc.

Notation. For a positive integer m, let   

denote the set of all factors of m, and let  be the 

second smallest factor of m,  the greatest factor 

of m not greater than  , and   the smallest fac-

tor of m not less than  . Namely,  

 ∩ ,    ∩  , 

and    ∩ .

Given     , the minimum of     

  occurs at a single point  ∊    because 

of Lemma 6, but can occur at more than one point 

∊  . Thus, we define  as the set of all 

factors of m where f has the minimum: 

  ∊      ≤   
   for all  ∊   .  is determined by 

   , and the number of its elements is ei-

ther one or two. The following theorem finds the 
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value, , of   which is used to determine 

whether  is inside    or inside  .

Theorem 9. Define  and  as  



  




    




  

   if  ≥, and the root of 

        in    

otherwise. For any  ∊ ∞   ∊    , and 

∊   ∩, we have ⊂   for all 

 ≤   and ⊂  for all 

   .

Proof. Fix  ∊ ∞  ∊    , and m

∊   ∩ . Put       and  

   . Define a function    on (0,1) as 

   


           

. Then,    is decreasing on (0,1), lim
→
   

  , and lim
→
      . If ≥ , then 

      for all  ∊     . Otherwise, 

there exists uniquely ∊   such that

        for all ∊      ;

        for all     ;

        for all ∊      .

Therefore, 


   ≥  if and only if 

 ≤ .
Case 1.   ≤ : Since 



     

≥ , we have         

for all ∊∩, and hence 

⊂  .

Case 2.      : Since 


   

  , we have        for 

all  ∊∩, and hence ⊂ 

 .                                      ■

Note that   is composed of a single element, 

say  , in general. Recall        



 










 . Let  ∊   be the 

point where     ⋅  has the minimum. The 

value of        at ∊     (resp. at 

∊  ) depends mainly on 


  (resp. on 










 ). At every ∊    , 



  is an 

increasing function in    , and 









  

is an increasing function in d and a decreasing func-

tion in m. Therefore,   tends to increase as d de-

creases, and m and  increase, and to decrease as d 

increases, and m and  decrease.

Consider the case where we are given random 

permutations. In this case,     is an in-

creasing function in d. This implies that   should 

be observed when both d and  move in the same 

direction. Therefore, we combine Theorem 8 with 

Theorem 9 for relatively small d's and 's in the 

following corollary: in most cases, the optimal num-

ber of compositions occurs between   and   for 

 's with   ≤ . Here,  is easier to 

compute than .

Corollary 10. Define     
  





       






      




  . For any 

 ∊ ∞   ∊     (resp.  ∊    ),

∊   ∩ (resp. ∊   ∩), and 

∊     , we have ⊂   .

Proof. Recall   and  from Theorem 9. We 

will show that  ≤  ≤  
holds for all (n, d, m). Then, the conclusion follows 

from Theorems 8 and 9.

Fix ∊ ∞ and ∊    . Note that 





      






    




 ≥   

for all  ∊    , which is implied by  

   ≤    

www.dbpia.co.kr



한국통신학회논문지 '06-3 Vol.31 No.3C

292

   Therefore, we have   

≥  for all  ∊    .

Fix  ∊    . Put     ,   

 , and     . Choose  ∊ 

  . We will show that ∊    . Since ≥ , 

we have 


          

≥ Note that  

     ≥  for all  ≤≤  
  





 , 

and that  ≤  ≤   
 


  





  . 

Hence, 


   ≥ . Since 



  

  is a decreasing function in  ∊    , 

∊     holds by the definition of , from 

which ≤ follows.                       ■

Ⅴ. Concluding Remarks

The exact securities of composition and XOR of 

random permutations (i.e.    ), 

       in this paper) are not 

known yet. Thus, their upper bounds (i.e. 

     ,  

   ) can be used as an important data when 

we select one of the two methods. This paper has 

analyzed the trade-off between s and c in 

      , where sc=m and  

 ∘⋯∘ ⊕⋯⊕

∘⋯∘ for i.i.d. random permutations  's: 

for most (n, d, m)'s under consideration, we have 

shown the following.

(a)       

      if and only if  

    .

(b) Regardless of the security of  , 

          

    for every c satisfying   ≤ .

(c) If    , the optimal c is tightly 

bounded above by  (the smallest factor of m not 

less than ) and below by  (the second small-

est factor of m).
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