DEri=

=& 06-31-4C-16 FEAIS}B|=FA] "06-4 Vol.31 No4C

ddeddHol| osl FAdE HAHAH
sl Qede] e
Ao o] 5 P, TN = F Ak Aeld A P R
Eigenvalues of Non-Sylvester Hadamard Matrices
Constructed by Monomial Permutation Matrices

Seung-Rae Lee* Regular Member, Jong-Seon No* Lifelong Member,
Koeng-Mo Sung* Regular Member

o oF
2 %

of ofs T The w2 seis Bde] wfAVt FE =93 ol
E sttivle Bde] nRHste] AP BelFh

e
c
i
=2
X
|
rSl
> oot
H>
l> 12
O::
i)

Key Words : Hadamard matrix, Equivalent Hadamard matrix, Eigenvalues of Hadamard matrix, Monomial
permutation matrix

ABSTRACT

In this paper, the eigenvalues of various non-Sylvester Hadamard matrices constructed by monomial permutation
matrices are derived, which shows the relation between the eigenvalues of the newly constructed matrix and Sylvester

Hadamard matrix.

I. Introduction n € N is an n x n matrix of +1‘s and -1’s such that

H, H'=n1, where I, is the n x n identity matrix

A Hadamard matrix A of order n is an n x n square and H denotes transpose of 7.

matrix of +1‘s and -1’s such that any pair of distinct . .
. . L . There are various construction methods for

rows is orthogonal (i.e., their inner product is zero). In . .
L Hadamard matrices such as Sylvester construction and
the Hadamard matrix invented by Sylvester (1867), . .
. . . . Paley construction (see [1], Chapter 6). In this paper,
placing any two columns or rows side by side gives . . .
. . we will modify the Sylvester construction of order
half the adjacent cells the same sign and the half, the o ke N

, k €N.
opposite sign. The following serves as a formal defi- /

. . It is known that Hadamard transform is an orthogo-
nition of Hadamard matrix.

nal transform with practical purpose for representin
Let N be the set of natural numbers. P purp P &

signals and images especially for the data compression

Definition 1.1: A Hadamard matrix /A, of order [2]. A complete set of 2" Walsh functions of order n
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gives a Hadamard matrix /,.. Walsh Hadamard trans-

form (WHT) is used for the Walsh representation of the
data sequences in image coding and for signature se-
quence in the CDMA mobile communication systems.

It is known that the sampled Walsh function corre-
sponds to row vectors of the Hadamard matrices /7.
Hadamard matrices can be used to make error-correct-
ing codes, in particular, the Reed-Muller codes.

Let Z, and Oy, 7 € N UO be the (2’ x 2’) identity
matrix and zero matrix, respectively.

We also define matrices as

o _[2(#1! 02“1;} _[ Ozufn _IZ(A—H }
%L_[ OZU 1) _[2“‘ 1) ’5}_ ]éu i’ @(x 1)

02“‘ 1) ‘Z‘-ZU‘ 1)
‘]2"_|: _[2“ 1) 02M 1) fork =1.

Sylvester Hadamard matrix /, can be represented as

Hyw=H QH fo k >1

where ® denotes the Kronecker product and

41 +1
H2—[+1 71}-

Upto now, only the eigenvalues of the Sylvester

Hadamard matrix /. are known as

i) 2" eigenvalues are + 212,

i) 2" eigenvalues are — 212,
It is interesting to investigate the eigenvalues of
Hadamard matrices other than Sylvester-type [3], [4].
The following definitions and theorems will be
used in Section II.
A monomial matrix (sometimes called scaled per-
mutation matrix) has exactly one nonzero entry in ev-

ery row and column.

Definition 1.2: [5] Matrices A and B are said to be
equivalent Hadamard matrices, if B= PA @, where
P and Q) are monomial permutation matrices with el-
ements -1 and +1.

Letn € N be a dimension of matrix 4. 4",

A and A" denote the complex conjugate and trans-

pose, complex conjugate, and transpose of A,

respectively. Further let

_ 0 7

S

be a standard involutary permutation (sip) matrix,
which has the properties J ' =—J and J© =— J.

Definition 1.3: (Adjoint) The adjoint of the r X ¢

matrix A is the 7 X ¢ matrix such that

A* =4, , 1<i <r,1<j<ec.

Let C be the set of complex numbers.

An operator A is called self-adjoint or Hermitian if
A= A"and normal if AA" = A"A.

It can be easily seen that for every n x n invertible

Hermitian matrix 7, the formula
[2,y] = (Lo,y),z,y € C"

determines an indefinite scalar product on C".

The L-adjoint AV of A is the unique matrix,
which satisfies [Az, y] = [z, A'ly] forall z, y € C".
Let A* : C" — C" be the usual adjoint of A (i.e.
(x,A"y) = (Az,y) forall z,y € C"). It follows that

A= AT

Now, it is natural to describe a matrix as

L-selfadjoint (or selfadjoint with respect to [.,.]) if
A=A

Proposition 1.4: [6] The set of eigenvalues A (4)
of an L-selfadjoint matrix A, is symmetric relative to
the real axis, i.e. Ao € A(A) implies X\, € A(A).
Moreover, in the Jordan normal form of A, the size of

the Jordan blocks with eigenvalue )\, are equal to the

sizes of Jordan blocks with eigenvalue by 0-

In the next section, we will investigate the ei-
genvalues and eigenvectors of the non-Sylvetser
Hadamard matrices, which are particularly equivalent

to the Sylvester Hadamard matrices.
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II. Main Results

Let Pz = diag { 1,1,1,-1} be a 4x4 monomial per-

mutation matrix.
In order to construct the non-Sylvester Hadamard
matrices, we define the non- Sylvester Hadamard ma-

trix 2 as

= [ H H
R4—P4H4—[ S, — 1S ]

Then,
MR)={-2.2, —14j3,—-1—j 3}

is the set of all eigenvalues of the matrix R,

Let
;zﬁl::jBTGQQ.

Further, let

}%::

O o O
coNo
oo o
coco

—%

and Py =B QL. (k =3).

Then we can define the matrix & +1 as follows.

Definition IL.1: For k > 1, we define a class of

non-Sylvester Hadamard matrices as

R p Hy Hy
RQ"H :P2A+1 . HZ"" = [ 2 2 ]

}£“$‘47[é¢%

Note that the sign of a quarter rows of the matrix

H,.. is changed to yield R et

Similarly, we can also define a matrix using Py

as follows.

Definition I1.2: For k = 2, we define a matrix as

~ . Ry Ry
}jm+1::134+1 '}ZKH = ~ 2 ~ 2 .
’ ? ? [stgk, RQHS;J

436

Remark I1.3: Since ﬁyﬂ and IADQ,H are both mono-
mial permutation matrices according to Definition 1.2,
the matrices ]~22m and R ,+1 are equivalent to the
Sylvetser Hadamard matrix /7., and f,.. fork =1

and 7 = 2, respectively.

Definition I1.4: For a given n, the complex num-

bers z which satisfies

Z'=1 (neN)

are called the complex n-th roots of unity. There are n

different n-th roots of unity.

Theorem I1.5: Let X\ (Hy. ), k > 1, and Ay be the
set of eigenvalues and a eigenvalue of a Sylvester
Hadamard matrix [{2““ of order n = 2", respec-
tively.

The spectrum of the matrix ﬁT 1 for k = 2 can be

expressed as

i) 20772 21 times

i) — 24772 2571 times
iii) 242 4 j ok D2 g4y % 2%~ times

iv)2<k71)/2*j 22 5in %, 2" times

v) — 202 o2 iy % 272 times

vi)—2(‘"’l’/2—j glkt1)/2 i) T
where j = /— 1.

Proof: We first prove the case i) and ii).
Let vl(l) and 1}52), 1 <i<2"be eigenvectors of

k41 k41

the corresponding eigenvalues 2 and —2 ? of

HQH,, respectively.
It is clear that any linear combinations of 1151) (or

vf)) are also eigenvectors of the corresponding ei-

genvalue2 > (or-2 ? ).
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Using the elementary column operations for v; !

or o)), 1 <i <28 28t x okt

. . . [ .
matrix consisting of 2°*" eigenvectors given as

where
BZL: diag {)\1,"', )\25 17_)\1, ey _)\2A 1 }
=5 RSN *5 =5
=diag{2?,22,-22, .., —22}

(COIN () L 2 2 (2)
V*[Uly Uy 'y, Uy U, 00, m0, Uy ] . .
From this, we can infer that half-spectrums of the
can be modified as matrices Rzm and f;,, for k > 1 are the same.
i ay ay,2 Ay ov Ay vy Ay 9k 49 Ay gh+1 i
Qg1 Qg2 e Qg o 41 : Qg g+
V= Ayt Aok g 41 At i1
Agrpqq Qoryyp "0 "7 Ay p26 41 Aorpnptpn W70 700 Ooghgy oot
0 Gyiygy o o 0 Aoy 0 :
0 0 - - 0 0 :
L 0 0 0 -- a/2k71’2k 0 0 © gkt gk i
By choosing the first 2° ' columns and 2" + 1 -st col-
umn through 3 - 2" 'th columns in (2.13), for
k > 1, we have the 2°"' X 2" matrix as
a1 G2 7 Qpgr Qpogigy Gpoigo Ay 3.9

1 oo

Ayyy Qyrgyo "7

Qoo Ggorys 652,3:2‘*l

Ayiyy941 Ayrpg oo " " Aoy g9

0 0 0 0
0 0 0 0 ]
where the last 2" ! rows are zero. Let A= Hy  and ]l/[:[ 1;11 B ;14 ] Then
It is clear that the first 2! columns are still ei- 44
. . (k+1)/2 [WS:[ 44 :I We obtain
genvectors of the corresponding eigenvalue 2
d the last 2°7' col th ding ei A 444
and the las columns the corresponding ei- = _[ M ]l/[:|_ A -4 4 -4 and
_ok+1)2 } MM -M | A A-A -4
genvalue — 2 of Hy-.. Thus we have the fol A4 —4 A
lowing relations 4 4 4 4
_ B M M A -4 A -4
Xy Py = X, PUOTLMS -MS | A A -4 —A
—A A A -4
and Since
_ _ AA=2""L, A(—A)=—1I; . and
AX;ATH R2A—1 = AX;ZZrl PQA—1 H2A+1 o o
MM= 2" I, it is easily verified that
7
- ok +1 HzA—l
= By X1, Hyo =R =" )Y L. 2.17)
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Equation (2.17) tells us that eigenvalues of EQM

are complex 6-th roots on the circle, whose radius is
the absolute value of the eigenvalues of the Sylvester

Hadamard matrix. It is known that if \ is a complex

eigenvalue of real matrix, then ) is also eigenvalue of
k+1 .

the real matrix. Thus 2 * e * are the eigenvalues
of jé gkl

Since the trace of 2 g1 is equal to zero, the sum of

all eigenvalues of ]?QM should be zero. Using the

above properties, the distribution of the eigenvalues
can be derived. VAN

Corollary I1.6: Let A\, be an eigenvalue of the ma-

trix R?, which is not an eigenvalue of the Sylvester

Hadamard matrix /2, for k = 1. Then, we have
A2L+\ == /\Zk \/Q

Theorem I1.7: Let \(Hy..), k=1, and Ay be
the set of eigenvalues and a eigenvalue of a Sylvester

k+1
, respec-

Hadamard matrix /. of order n = 2
tively.
Then the spectrum of the matrix R g for k=2

can be expressed as

k+1
)22, 27! times
k+1
i) -2 2, 27! times
T e
)2 2 e Tort2 % e?, 2" times.

Proof: We first prove the cases i) and ii). It is clear
that 2° ' rows/columns of the matrix 7 o+1 have neg-

ative signs compared with the identity matrix. Let 1/

' rows and the

be the matrix swapped the fourth 2"~
last (eighth) 2

trix V into V' in the form of (2.12) by elementary col-

"~! of V. Then we can modify the ma-

umn operation. By swapping the fourth 2" ' rows and

the last 2° 7' of 1/ and applying the similar method

used in the proof of the previous theorem, we can
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easily prove the cases i) and ii). Similarly to Theorem

IL.5, we can derive
H. =Ry =2"")' Lo, k=2, (220

This implies that the eigenvalues of the matrices

R i for k = 2 are complex 8-th roots on the circle,
whose radius is the absolute value of the eigenvalues
of the Sylvester Hadamard matrix. VAN

We can also construct various non- Sylvester-
Hadamard matrices using different monomial permu-
tation matrices. For example, we can change the rows
of a quarter or half of the Sylvester-Hadamard
matrices.

The eigenvalues will be created depending on
which rows of the Hadamard matrices are changed. In
case the sign with a quarter of rows is changed, the
same result as that case in Theorem I1.4 is observed.

As the case when the sign with a half of rows is
changed, let us define a new matrix as

H, Hy
GIH»I: 2 2 ] f kZ 0
7 [—HT Hy | ™"

where [, is a Hadamard matrix of order 2" and

H, =1.From (2.21), it follows immediately that
Gé; +1 — G’Z ®H2L .

These matrices Gj+1 are also equivalent to the

Sylvester-Hadamard matrices.
Next, let us investigate the eigenvalues and ei-

genvectors of the matrix of Gy-1.

Theorem I1.8: Let X, be an eigenvector of the ma-

trix H, associated with eigenvalue A ne
Further, let A, ; be an eigenvalue of the matrix

G, | 1. Then,
)\n+] :Xn (1+j)01';\vn (1_j)

and the corresponding eigenvector is

[Jffx } o [J)gf]

www.dbpia.co.kr
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respectively.

Proof: Let X, = [Z%], a, b e C.

H, H, ,
GL+1X1,+1 = [ _H,'l HL } I:Z?IJ

[ _omneax)
—al X, +bHX,

=[]

o s

In order for X, , | to be an eigenvector of G, 1,

we have

[tk 3]

From (2.27), we can infer that \,., = X, (1% j) for
a=1,b=jora=j, b=1,respectively. AN

~ I
Let J, :[ 9 dL :I be a Hermitian matrix. Then, it
n

can be easily confirmed that
jn'@+l'jn: n+1-

Thus, the matrix G, ,, is a J-selfadjoint matrix, and

according to the proposition 1.4, the spectrum
(G, .1 ) of a J-selfadjoint matrix G, is symmetric

relative to the real axis, i.e.

A € 0(G,.)impliesX € o(G,).

. Conclusions

We have presented various non-Sylvester Hadamard
matrices and provided their eigenvalues. The equiv-
alent Hadamard matrix constructed by the multi-
plication of the Hadamard matrix and a certain mono-
mial permutation matrix were found to show the inter-
esting similarity with the Hadamard matrix. For exam-
ple, half of the eigenvalues of one of these equivalent
Hadamard matrices were found to be the same as that

of the Sylvester Hadamard matrix. We have shown

that the eigenvaules of this matrix were determined by
the monomial permutaion matrix. We found that the
eigenvalues are determined depending on which rows
of the Hadamard matrices are changed.
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