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Low Complexity Ordered Successive Cancellation Algorithm 

for Multi-user STBC Systems
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ABSTRACT

This paper proposes two detection algorithms for Multi-user Space Time Block Code systems. The first one is 

linear detection Gaussian Elimination algorithm, and then it combined with Ordered Successive Cancellation to 

get better performance. The comparisons between receiver and other popular receivers, including linear receivers 

are provided. It will be shown that the performance of Gaussian Elimination receiver is similar but more 

simplicity than linear detection algorithms and performance of Gaussian Elimination Ordered Successive 

Cancellation superior as compared to other linear detection method.
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Ⅰ. Introduction

Next generation of wireless mobile communica-

tion needs reliable transmission of high rate data 

under potentially difficult environment. Multiple 

Input Multiple Output system (MIMO) is a tech-

nology which uses multiple transmit and/or multi-

ple receive antennas in order to increase channel 

capacity in wireless systems. 

Coding is one of key elements to successful 

implementation of a MIMO system. Space-time 

block coding is a simple but ingenious transmit 

diversity technique in MIMO technology. Space 

Time Block Code (STBC) 
[1] involves block en-

coding an incoming stream of data and simulta-

neously transmitting the symbols over transmit 

antennas. STBC can achieve full diversity gain, 

high rate and spectra efficiency with simple linear 

receiver. 

In order to improve performance, capacity with-

out taking more bandwidth, we consider a group 

of STBC systems called Multi-user STBC system, 

which is shown in Fig.1. Such systems have M 

co-channel users; each user has K antennas and 

the receiver has N receive antennas. The users 

can transmit simultaneously and independently 

space-time block coded data streams over the 

co-channels to the receiver.
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Fig. 1. Mutiuser systems with  users using space time 
block codes

For a STBC system, Maximum Likelihood de-

tector is an optimum detector, in term of 

performance. But its complexity increases ex-

ponentially with the number of transmit antennas 

and the symbol alphabet size. Two generalized 

detection algorithms, Gaussian Elimination (GE) 
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and Gaussian Elimination Ordered Successive 

Cancellation (GEOSUC) can achieve low-complex-

ity by using the algebraic properties of the STBC 

systems. 

The paper is organized as follows. In section II 

we review a Multi-user STBC System Model that 

provide in 
[2] for G2/G3/G4 STBC systems (refer 

[3] for more details). Two special properties of 

multi-user STBC equivalent channel matrices will 

be describe in section III. Section IV proposes 

two low complexity detection algorithms for mul-

ti-user STBC systems. Simulation results are 

shown in section V. Finally, section VI presents 

conclusions and final comments.

In the paper, vectors are represented with low-

er-case boldface letters and matrices upper-case 

boldface letters; ∙∙∙∙   denotes 

complex conjugate, transpose matrix, conjugate 

transpose matrix and inverse matrix respectively. 

  denotes an identity matrix size .

Ⅱ. Multi-user STBC system Model

To build a multi-user STBC system model for 

the system shown in Fig.1, let us first consider a 

single MIMO system created by the   user 

() and the receiver. 

The  dimensional received vector 

  
  at each time interval can be 

modeled as:

               (1)

where   
 ,   

  and 

  are the transmitted signal vector, the additive 

white Gaussian noise (AWGN) vector, the 

co-channel matrix, respectively. Assuming   is 

constant during some blocks of codeword, it can 

be written as: 
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An STBC transmitted codeword is a ×or-

thogonal matrix with elements ±±±  and 

their conjugates ±
±

±
 . Here  is the 

number of slots that used to transmit a codeword, 

and in each slot,  symbols are transmitted 

through transmit antennas simultaneously. An 

example of a complex orthogonal design (also 

called Alamouti STBC) is given by [3]:

 



 


 


 

                 (3)

This is the smallest complex orthogonal design 

STBC. Because the rate of STBC codes is de-

fined  so with   we have .

Let consider the a STBC system which has 

two transmit antennas (). Assume that 

AWGN vector at the receiver is independent and 

the MIMO channels among all transmitter-receiver 

antenna pairs are flat Rayleigh fading and it is 

constant during a STBC codeword transmission 

period but varies from one period to another. 

With the input symbols is   the received signal 

at the   receive antenna can be written as [2]:

           


     
      (4) 

where  is the channel gain between the  re-

ceive antenna and the   transmit antenna;    

and    (  ) are receive signal and noise 

during time slot . After some simple trans-

formation we can rewrite (4) into a different form 

as follows: 

                (5)

where       
  ,     

, 

   
  (input  symbols vector before coding) 

and

 



 


 


 

               (6)
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Equation (5) is STBC system model of two 

transmit antennas system;  ,  ,    are 

STBC equivalent received vector, STBC equiv-

alent channel matrix, STBC equivalent noise vec-

tor, respectively. Xun Fan et al. proposed    

STBC equivalent channel matrices for three and 

four transmit antennas [2] are shown in (7).

Now we consider the multi-user system that 

has M users, each user with  transmit antennas 

and the receiver has  antennas like Fig.1. 

Denote the STBC equivalent channel matrix be-

tween the   user and  the   receive antenna 

is 
  (where ). Denotes STBC 

equivalent channel matrix between the   user 

and receiver is   . So    can be expressed 

as.

             

















⋮




              (8)

With a multi-user STBC system that has M 

users, the equivalent channel matrix is created by 

combine of all equivalent channel matrices of sin-

gle users.

  
 ⋯
            (9)

Finally, we obtain the multi-user STBC system 

model as (10) where  ,  ,   are the trans-

mitted signal vector (precoding) of the   user, 

STBC equivalent received vector at     receive 

antenna and STBC equivalent noise vector at   

receive antenna, respectively. Equation (10) can be 

rewritten in a short form as follows.

                 (11)

where  ,  ,  and  are multi-user STBC 

equivalent received vector, multi-user STBC 

equivalent channel, multi-user STBC transmit sym-

bols vector (precoding), multi-user STBC equiv-

alent noise, respectively.
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Ⅲ. Properties of multi-user STBC 

equivalent channel matrices

This section presents two special characteristic 

of the single user STBC equivalent channel ma-

trix . 

Firstly, because   is an orthogonal matrix we 

have (12). Denotes 

  
  

  ⋯
  ⋯

  

where 
  is the channel gain between the  re-

ceive antenna and the   transmit antenna of user 

 . We can express 
  as:


               (13)

Here   is real number and  . Denotes  

and  

   and 

  so  is a 

× matrix which is composed bye a set of 

× matrices. All elements in diagonal of  

have form like (12).  can be written as.
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Secondly, the value of   proportion to SNR 

in term of detected block symbols which means 

the bigger   the higher SNR. In the next sec-

tion, we will implement two algorithms by using 

the characteristics of the equivalent channel. 

Ⅳ. Detection algorithms 

4.1 Common ZF and MMSE Detection 

Algorithms

This subsection reviews two well known Linear 

Detection algorithms are Zero-Forcing (ZF) and 

minimum mean square error (MMSE). In ZF and 

MMSE detectors, symbols can be detected by 

multiplying the received signal vector with ma-

trices given by.

1 1

2 1 2 1

( ) ( )

( ) ( )

H H H

H H H

MK MK
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MMSE σ σ

− −

− −

= =

= + = +

H H H H X H

H H H I H X I H

%

%

(15)

where   is noise variance. Calculation inverse 

matrix of a × matrix will cost   

operations [4]. The big O notation denotes the 

time complexity of a problem. It is the number 

of steps that it takes to solve a problem as a 

function of the size of the input (usually meas-

ured in bits). In this case   means we 

need   steps to calculate the inverse matrix 

of matrix . If we divide  into block of small-

er matrices we can reduce the computational com-

plexity significantly. Next subsection will present 

Gaussian Elimination (GE) [4] that can use to re-

duce the computational at receiver.

4.2 Gaussian Elimination algorithm

By denoting   
   and   

 , we 

have: 

1

2

M

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

Y
Y

Y

M

               (16)

Using ZF, the detected symbols can be de-

tected by this equation 

1ˆ ( )H H−=s H H H r
or

1ˆ .H−=s X H r

So we can transform it to following equation.

ˆ =Xs Y               (17)
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Solving the equation we will find out the de-

tected symbols   . To solve this equation we use 

GE. GE performs elementary row operations to 

put the augmented matrix  ][X Y  into upper tri-

angular form as below:

1,1 1, 2 1, 1

2 , 2 2 , 2

,

0

0 0

M

M

M M M

′ ′ ′

′ ′

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎣ ⎦

X X X Y

X X Y

X Y

L

L

M M O M M

L    (18)

Then roots of the equation will be calculated 

as follow:

( ),

1,

1
늿

M

m m m i i

i mm m = +

′ ′= −
′

∑s Y X s
X        (19)

Tab. 1 presents Gaussian Elimination algorithm 

which is used for solving equation (17). From 

(1-1) to (1-8) are elementary row operations and 

from (1-9) to (1-15) are calculating   successively.

Table. 1 Gaussian elimination algorithm

INPUT: X , Y

OUTPUT:  ŝ

(1-1)  for 1 : 1k M= − // transform time

(1-2)   for 1 :i k M= +    // row index

(1-3)  , ,
/

i i k i k k k
= −Y Y Y X X        

(1-4)  for 1 :j k M= + // column index

(1-5)     , , , , ,
/

i j i j i j k j k k
= −X X X X X         

(1-6)  end

(1-7)    end

(1-8)  end

(1-9)  ,
ˆ /
M M M M
=s Y X

(1-10) for 1 : 1i M= −  

(1-11)    ,
ˆ /
i i i i
=s Y X

(1-12) for 1 :j i M= +  

(1-13)    , ,
늿 1 / ( )
i i i i i j j
= −s s X X s

(1-14)    end

(1-15) end

The complexity of the Gaussian Elimination al-

gorithm for a × matrix is  and 

instead of calculating the inverse matrix of the 

× matrix, we only need calculate the in-

version of the × matrices, and then the com-

plexity of our Gaussian Elimination is 

 per codeword interval. In case 

of MMSE, we use  instead of  

4.3 Gaussian Elimination Ordered 

Successive Cancellation Algorithm

The Ordered Successive Cancellation (OSUC) 

such as V-BLAST [5] has gained a lot of popu-

larity because of its simplicity. This algorithm in-

cludes four main operations: ordering, nulling, 

slicing and updating [6],[7].

In Tab. 2 we present an Ordered Successive 

Cancellation algorithm that uses the special char-

acteristic of multi-user equivalent channel and row 

operations are performed by Gaussian Elimination. 

So that we call the algorithm is Gaussian 

Elimination Ordered Successive Cancellation 

(GEOSUC) algorithm. Before using Gaussian 

Elimination, from (2-1) to (2-8) rows of matrix 

will be sorted into the ascending order of  . 

This process is implemented by bubble sort algo-

rithm, which has complexity  in the worst 

case. And swapping rows process of matrix in 

(2-4) and (2-5) will cost   operations. From 

(2-9) to (2-16) are Gaussian Elimination process 

and from (2-16) to (2-25) are updating and slic-

ing process. In (2-24), ∙ is quantization func-

tion that slide detected signals to the nearest 

constellations. The complexity of GEOSUC (not 

include slicing process) is a sum of complexity of 

GE algorithm and ordering process. Hence the 

complexity of GEOSUC algorithm is 

.

Ⅴ. Simulation Results

In this section, simulation results are provided 

to demonstrate the performance of our two pro-

posed algorithms. All the simulations use QPSK 

input symbols. Channel is flat Rayleigh fading 

and the receiver has 4 antennas. Assume that the 

channel is known at the receiver perfectly. The 
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Linear Detection (LD) algorithm using in the sim-

ulations is Zero Forcing.

Table. 2 Gaussian elimination Ordered Successive 
Cancellation Algorithm GEOSUC

INPUT: X , Y , α  
OUTPUT:  s

w

(2-1)  for 1 : 1i M= −  

(2-2) for 1 :j i=  

(2-3)    if ( 1) ( )j j− >α α  

(2-4)       swap ( 1)j −α  and ( )jα  

(2-5)       swap  ( 1, :)j −X and ( , :)jX  
(2-6)    end
(2-7) end
(2-8)  end
(2-9)  for 1 : 1k M= −       // transform time
(2-10) for 1 :i k M= +    // row index

(2-11)    , ,
/

i i k i k k k
= −Y Y Y X X

(2-12)     for 1 :j k M= +  // column index

(2-13)         , , , , ,
/

i j i j i j k j k k
= −X X X X X      

(2-14)     end
(2-15)     end
(2-16)  end

(2-17)  ,
ˆ /
M M M M
=s Y X  

(2-18)  ˆ( )
M M

Q=s s  

(2-19)  for 1 : 1i M= −   

(2-20)     ,
ˆ /
i i i i
=s Y X   

(2-21)   for  1 :j i M= +

(2-22)      , ,
늿 1 / ( )
i i i i i j j
= −s s X X s        

(2-23)   end
(2-25)  end  

Fig.2 shows the complexity comparison of three 

detection algorithms, linear detection, GE and 

GEOSUC with K=2. GE is the most simplicity 

algorithm and follows by GEOSUC and Linear 

Detection algorithm. When the number of users 

increases we can see the complexity of Linear 

Detection algorithm much more than GE and 

GEOSUC.
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Fig. 2. Complexity comparison of Linear Detection, GE 
and GEOSUC algorithms

Fig.3 shows the performance of three multi-user 

STBC systems, which have one, two and three 

users and two transmit antennas each user. The 

figure shows that performance of GEOSUC is lit-

ter better than GE. LD 2 users and GE 2 users 

are overlap due to they has same performance. 

However, GE complexity is much lower than ZF. 

In case 1 user, all algorithms have same 

performance.
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Ⅵ. Conclusion

We have proposed GE and GEOSUC, two low 

complexity detection algorithms for Multi-user 

STBC systems. By dividing the channel into 

blocks of smaller matrices and exploiting the spe-

cial characteristics of the STBC equivalent chan-

nel, we develop low complexity and better per-

formance algorithms. 

The complexity of GE and GEOSUC are better 

than linear detection ZF and MMSE, which have 

complexity . The more number of users the lower 

of complexity we get. The simulation also shows 

that the performance of GEOSUC outperforms the 

linear detection.
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