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ABSTRACT

This paper presents low latency and/or computation algorithms of iterative codes of turbo codes, turbo 

product codes and low density parity check codes for use in wireless broadband communication systems. Due 

to high coding complexity of iterative codes, this paper focus on lower complexity and/or latency algorithms 

that are easily implementable in hardware and further accelerate the decoding speed. 
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Ⅰ. Introduction

  Iterative decoding based on symbol-by-symbol 

soft-in/soft-out decoding algorithm has significant 

attention, due to its near Shannon-limit error per-

formance for decoding of turbo codes [1], low 

density parity-check (LDPC) code [2] and turbo 

product code [3]. Like maximum a posterior prob-

ability (MAP) decoding, iterative decoder proc-

esses the received symbols recursively to improve 

the reliability of each symbol based on constrains 

that specify the code. In the first iteration, the 

decoder only uses the channel output, and gen-

erates soft output for each symbol. The output re-

liability measures of the decoded symbols at the 

end of each decoding iteration are used as input 

for next iteration. Therefore, the latency and com-

plexity caused by several iterations and high com-

putation order, it can be difficult to implement 

the decoding in hardware and to apply the 

high-speed wireless applications [4]. To solve the 

latency problem, early-stop algorithms that the de-

coding iteration processes until a certain stopping 

condition is satisfied, can be applied. Furthermore, 

fully parallel decoder structure also can be applied 

for iterative decoders to reduce the latency. 

Therefore, early-stop algorithm and parallel fash-

ioned decoder can be applied to all of the iter-

ative codes in common. However, the standard 

LDPC codes can have large codeword length and 

it can be difficult to implement hardware in a 

fully parallel way. For example, The Digital 

Video Broadcasting (DVB-S2) recommends that 

LDPC coded block size be 64800, and the num-

ber of iteration be about 70 in the case of half 

coding rate. A large number of iterations for a 

large block size gives rise to a large number of 

computation operations, mass power consumption, 

and decoding delay. Furthermore, a large number 

of block size make impossible to implement by 

fully parallel way. It is necessary to use partial 

parallel way. In [5], "shuffled" method were pre-

sented to reduced the required number of 

iterations. However it requires double hardware 

size compared to conventional one.  In LDPC co-

des cases, this paper proposes two kinds of sim-

plified complexity-reduced algorithm. First, sequen-

tial decoding with partial group is proposed. It 

has the same H/W complexity, and a few num-

bers of iteration are required at the same perform-

ance in comparison with a conventional decoder 

algorithm. Secondly, an early detection method for 

reducing the computational complexity is 

proposed. Using a confidence criterion, some bit 
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nodes and check node edges are detected early on 

during decoding. In this way, because early de-

tected edges are not computed from following 

iterations, the computational complexity of further 

processing is reduced. In turbo codes cases, the 

latency caused by serially calculations of forward 

and backward metric can be dramatically reduced 

by using a radix-4 and dual-path processing. 

  The aim of this paper is to introduce several 

low-latency and/or complexity algorithms which 

further accelerate the decoding speed for turbo co-

des, LDPC codes and turbo product codes.

Ⅱ. Low Latency Algorithms of 

Turbo Code

  Since convolutional turbo codes are very flexi-

ble codes, easily adaptable to a large rate of 

block sizes and coding rates, they have been 

adopted in the DVB standard for Return Channel 

via Satellite(DVB-RCS). The use of RCST(RCS 

Terminal) includes individual and collective in-

stallation(e.g. SMATV) in domestic environment. 

However, the applications of turbo codes are lim-

ited to specific data such as low data-rate services 

because of their limit of decoding speed. 

Therefore, it is highly required to develop the 

high-speed turbo decoder. To solve the problem 

with latency of turbo decoder, four kinds of algo-

rithms are introduced. The first algorithm is rad-

ix-4 algorithm and the second algorithm is the 

dual-path processing algorithm. The third algo-

rithm is the full parallel decoding algorithm. The 

fourth algorithm is the early-stop algorithm based 

on hard-decision-aided (HDA) scheme. The decod-

ing iteration processes until a certain stopping 

condition is satisfied Then hard decisions are 

made based on the reliability measures of the de-

coded symbol at the last decoding iteration

2.1 Radix-4 Algorithm

  The first algorithm is the radix-4 decoding al-

gorithm, where the previous state at t=k-2 goes 

forward to the current state at t=k, and the re-

verse state at t=k+2 goes backwards from the cur-

rent one such that the time interval from t=k-2 to 

t=k is merged into t=k. Therefore, we can decode 

two source data bits at the same time without 

any performance degradation while reducing the 

block size buffered in memory. Using the unified 

approach to state metrics, a 2
v-1 -state trellis can 

be iterated from time index n-k to n by decom-

posing the trellis into 2
v-k sub-trellises, each con-

sisting of k iterations of a 2k -state trellis. Each 

2
k -state's sub-trellis can be collapsed into an 

equivalent one-stage radix-2k trellis by applying k 

levels of look-ahead to the recursive update. 

Collapsing the trellis does not affect the decoder 

performance since there is a one-to-one mapping 

between the collapsed trellis and radix-2 trellis. 

An example of the decomposition of a 4-state 

radix-2 into an equivalent radix-4 trellis using one 

stage of look-ahead is shown in Fig. 1, where 

v=3, g1=(7)octal, g2=(5)octal with v denoting the 

constraint length.

 (a) 4-state radix-2 trellis       (b) 4-state radix-4 trellis

Fig. 1. Four-state radix-2 to radix-4 trellis

2.2 Dual-Path Processing Algorithm

  In a conventional scheme, the decoder must 

wait for finishing the backward state metric 

(BSM) (or forward state metric (FSM)) calcu-

lations before calculating the extrinsic information. 

The dual-path processing method doesn't need to 

wait. The decoder calculates the FSM (left to 

right) and BSM (right to left), simultaneously. 

When the FSM and BSM reach the same point, 

then the decoder begins to calculate the extrinsic 

information. Fig. 2 shows the operation of du-

al-path processing.
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Fig. 2. Dual-path processing algorithm

  The procedure of the dual-path processing is as 

follows.

  Step 1: Initialize the forward state metric and 

backward state metric.
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  Step 3: At the middle point, begin to calculate 

the log likelihood ratios (LLR).
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2.3 Parallel Algorithm

  Different from the original turbo decoder con-

sisting of two decoders concatenated in a serial 

fashion, we present a parallel decoder structure 

using the parallel sum, where the two decoders 

operate in parallel and update each other immedi-

ately and simultaneously after each one has com-

pleted its decoding. In decoding the estimated da-

ta, we use the sum of the LLR outputs of the 

parallel decoders to reduce the latency to half 

while maintaining the same performance level.

Fig.3. Parallel structure of turbo decoder

2.4 Early Stop Algorithm

  The decoding iteration processes until a certain 

stopping condition is satisfied, hard decisions are 

made based on the reliability measures of the de-

coded symbol at the last decoding iteration. HAD 

algorithm is used as an early-stop algorithm. It 

compares each decision generated by the two de-

coders, and when the two sets of decisions match, 

it stops decoding on the current block and outputs 

the hard decision bits. Table 1 shows the average 
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number of iterations in an HAD algorithm. At an 

Eb/N0 of 2 dB, it requires about 2.8 iterations rel-

ative to 8 for a given performance. This means 

that the decoding speed is improved or the power 

consumption (cost) is reduced by 64.6 %.

Table 1. The average number of iterations according to 
Eb/N0 (the predetermined number of iterations is 8)

2.5 Simulation Results

  The bit-error rate (BER) performance of the 

new high-speed turbo decoder architecture combin-

ing the four schemes is analyzed in this section. 

For a comparison purpose, Fig. 4 shows the per-

formance of the new decoder and a conventional 

one using v=3 turbo codes with generator poly-

nomials g1=(7)octal, g2=(5)octals a function of inter-

leaving size N and as a function of the number 

of iterations I. In the radix-4 method, the symbol 

interleaving, takes an information stream of length 

Ns composed of 2-bit words and feeds it to a 

random interleaving. From the figure, it can be 

verified that the performances of the proposed de-

coder architecture is very close to the conven-

tional decoder for small block sizes (less than 

300 bits). For large interleaving sizes (more than 

300 bits), the performance of the new decoder is 

slightly degraded relative to the conventional one 

because the randomness of the symbol interleaving 

is reduced. In addition, although parallel fashioned 

decoder reduces the decoding delay of serial de-

coding by half, the extrinsic messages are not 

taken advantage of as soon as they become avail-

able, because the extrinsic messages are delivered 

to component decoders only after each iteration is 

complete. This disadvantage is maybe solved by 

applying "replica shuffled algorithm" in Reference 

[5].

(a) Convention algorithm (N=200)

(b) Proposed algorithm (N = 100)

(c) Convention algorithm (N=300)

(d) Proposed algorithm (N = 150)

Fig. 4. Performance of the proposed decoder over an 
AWGN channel compared with that of a conventional 
algorithm as a function of interleaver size and number of 
iterations.
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Ⅲ. Low Latency Algorithms of 

LDPC codes

  The high definition television (HDTV) satellite 

standard, known as the Digital Video Broadcasting 

(DVB-S2) transmission system, employs a low 

density parity check (LDPC) coding technique as 

a channel coding scheme. Unlike turbo codes, 

LDPC codes have an easily parallelizable decod-

ing algorithm, which consists of simple operations 

such as addition, comparison, and creation of a 

look-up table. Moreover, the degree of parallelism 

is 'adjustable', which makes it easy to trade-off 

both throughput and complexity. However, the 

DVB-S2 system requires a large block size and 

large number of iterations to near Shannon's 

limit. The standard recommends that the LDPC 

coded block size be 64800, and the number of 

iteration be about 70 in the case of a half-coding 

rate. A large number of iterations for a large 

block size give rise to a large number of compu-

tation operations, mass power consumption, and 

decoding delay. It is necessary to reduce the iter-

ation numbers and computation operations without 

performance degradation in order to implement an 

LDPC decoder with low power consumption. This 

paper proposes two kinds of simplified complex-

ity-reduced algorithms. First, sequential decoding 

with a partial group is proposed. It has the same 

hardware complexity, and a fewer number of iter-

ations is required at the same level of perform-

ance in comparison with a conventional decoder 

algorithm. The computation of bit node weights 

and check node weights can seem to be as an 

approximate projection based on the parity-check 

matrix; the grouping simply says that this projec-

tion can be done in several steps to obtain an ap-

proximate answer. Secondly, an early detection 

method for reducing the computational complexity 

is proposed. Using a confidence criterion, some 

bit nodes and check node edges are detected early 

on during decoding. In this way, because early 

detected edges are not computed from following 

iterations, the computational complexity of further 

processing is reduced.

3.1 LDPC Decoding Algorithm

  The purpose of the decoder is to determine the 

transmitted values of the bits. Bit nodes and 

check nodes communicate with each other to ac-

complish this goal. The decoding starts by assign-

ing the channel values to the outgoing edges, 

from bit nodes to check nodes. Upon receiving 

them, the check nodes make use of the parity 

check equations to update the bit node in-

formation and send it back. Each bit node then 

performs a soft majority vote among the in-

formation reaching him. At this point, if the hard 

decisions on the bits satisfy all of the parity 

check equations, it indicates that a valid codeword 

has been found and the process stops. Otherwise, 

the bit nodes go on sending the results of their 

soft majority votes to the check nodes. In the fol-

lowing sections, we describe the decoding algo-

rithm in detail.  The number of edges adjacent to 

a node is called the degree of that node.

  Step 1. Initialization

  The decoding starts by assigning the channel 

transmit values, rn , to the outgoing edges, from 

bit nodes to check nodes. The initial channel val-

ue is shown in (1).

1,,1,0
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2

(
2
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=⋅−=
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LrLu
cncn

…

σ

                      (4)

where, N is the codeword size and σ is Gaussian 

noise variance.

Step 2. Check Node Update 

Let us denote the incoming messages to the 

check node k from its dc adjacent bit nodes by 

kn
v

→1 , kn
v

→2 , … , kndc
v

→ , as shown in Fig. 

5(a). Our aim is to compute the outgoing mes-

sages from check node k back to dcadjacent bit 

nodes. Let us denote these messages by ,

1nk
w

→  

2nk
w

→ ,…, dcnk
w

→ . Each outgoing message from 

check node k to its adjacent bit nodes is com-

puted as
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Fig. 5. Message update at (a) check nodes and (b) bit 
nodes

  In practice, the LUTg(.) function is implemented 

using a small look-up table.

  Step 3. Bit Node Update 

  Let us denote the incoming messages to bit 

node n  from its dv adjacent check nodes by 

nk
w

→1 , nk
w

→2 ,..., nkdv
w

→ , as shown in Fig. 

5(b). Our aim is to compute the outgoing mes-

sages from bit node n back to dv adjacent check 

nodes. Let us denote these messages by 1kn
v

→ , 

2kn
v

→ ,..., dvkn
v

→ . They are computed as 

 
∑
≠

→→
+=

ij

nknkn ji
wuv

.         (6)

  Intuitively, this is a soft majority vote on the 

value of bit n, using all relevant information ex-

cept nk j
w

→

3.2 Sequential Decoding Algorithm 

with Partial Group

  In this paper, we propose a new decoding 

structure. First, we divide check nodes by p 

groups. The groups are in general randomly chos-

en so as to minimize the cycle-4 occurrence. 

Next, we decode group by group in a serial 

fashion. For example, Fig. 6 shows the decoding 

procedure in the case when p equals 2. Check 

node and bit node probabilities are calculated at 

the first group, as shown in Fig. 6(a). When the 

decoding process of the first group has been com-

pleted, the second group initiates the decoding 

process with the calculated bit node probability 

from the first group, as shown in Fig. 6(b). The 

proposed algorithm changes only the decoding or-

der without any performance degradation.

  If p equals one, the result is the same as a 

conventional decoder. Like the turbo decoding, the 

resultant extrinsic information of the first decoder 

is delivered to the second decoder. The proposed 

algorithm of LDPC decoding is the same theory. 

 

Group 1

Group 2 

Bit node

Check node

Bit node 

Check node 

Fig. 6. The bit and check node update procedure (p=2) 

at (a) the first group (b) the second group

3.3 Early Edge Detection Algorithm

  Another approach is early edge detection for re-

ducing the computational complexity. The early 

edge detection method is based on the observation 

that bit nodes and check nodes with a high 

log-likelihood value can be considered reliable. So 

detected bit node edges and check node edges are 

negligible for the next iteration. This means that 

www.dbpia.co.kr



논문 / Low Latency Algorithms for Iterative Codes

211

we don't need to calculate the bit node edges and 

check node edge updates for a detected edge 

from following iterations. Therefore, computational 

complexity of the next iterations is reduced. For 

early edge detection for the LDPC decoder, the 

proceedings are as follows:
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  If ][⋅tCheckEarlyDetec  or ][⋅tBitEarlyDetec  are 

equal to one, we don't need to calculate the bit 

node and check node updates, we just deliver the 

previous values to the bit nodes or check nodes. 

Therefore, it is very important to choose the early 

detection threshold: Tb for bit nodes and Tc for 

check nodes. 

3.4 Simulation Results 

  Fig. 7 shows the simulation results with code-

word size N=64800 and information size K=32400 

(number of check node, M=NK), comparing the 

BER performances of the conventional and se-

quential LDPC decoders. With a smaller number 

of iterations (Nr), the sequential decoding scheme 

with p = 2 (Nr = 35) shows the performance al-

most the same as that of a conventional scheme 

with p = 1 (Nr = 70). Fixing on Tc=10, we eval-

uated the performance for various values of Tb. 

As shown in Fig. 8, the performance of the early 

detection method with Tb=18 is the same as that 

of a conventional scheme.

  The required number of operations associated 

with the conventional and early detection algo-

rithms are summarized in Table 2, where dc
* de-

notes the average number of early detected edges 

for each check node and N* denotes the average 

number of early detected bit nodes. The decoding 

complexity of an LDPC decoder is evaluated 

based on Eq.(5) and Eq.(6). 
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Conventional decoder (Nr=70) 

Sequential decoder (Nr=35) 

Fig. 7. Bit error rate (BER) comparison between conven-

tional LDPC decoder and sequential LDPC decoder(p=2)
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Fig. 8. BER performance for different Tb (N=64800, 

K=32400 dc=7, dv=13

Fixing on the values of Tb =18 and Tc =10, 

Table 3 shows the simulated dc
* and N* from Nr 

iterations at Eb/N0=1 (dB) in the environment of 

N=64800, K=32400, M=32400, and dc=7, dv=13. 

As shown in Table 2, the computational complex-

ity of the early detected method is about 50% off 

in the case of the check node update, and 99% 

off in the case of the check node update com-

pared to the standard LDPC decoder scheme.

Table 2. Decoding complexity of conventioanl and early 
detection methods
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Table 3. The number of early detected edges

Ⅳ. I. Low Latency Algorithms of 

TPC codes

  The real difficulty in the field of channel cod-

ing is essentially a problem of decoding complex-

ity of powerful codes. Recently, there has been 

intensive focus on turbo product code (TPC) 

which has low latency and simple structures com-

pare with turbo code. It can achieve performances 

near Shannon limit. TPCs are two dimensional 

code constructed from small component codes. A 

two dimensional turbo product code(TPC) can be 

noted as C1⊗C2, where C1 and C2 are two line-

ar block codes. Place k1⊗k2 information symbols 

in array of k1 rows and k2 columns, and then 

encode the k1 rows using code C2. Afterwards, 

the resulting k2 columns are encoded using code 

C1. Usually, we choose C1 the same as C2. The 

conventional TPC decoder performs row and col-

umn decoding in a serial fashion. A soft input 

soft output(SISO) decoder, such as MAP, is used 

to decode each row or column.  The output of 

decoder is the reliability of the decision dj and 

the relationship expression between soft-out rj
` and 

soft-in rj is given by rj
`=rj+αwj . The extrinsic in-

formation wj for the j-th bit position is given by 

wj=βdj . Where β is a reliability factor to esti-

mate wj in case no competing codeword can be 

found. α is a weight factor to combat high stand-

ard deviation in wj and high BER during the first 

iterations. Fig.9 shows encoder construction and 

decoder structure.

  The operations above are performed on all bits 

of a product codeword, shown in Fig 2., hence, 

Eq.(1) can be expressed in matrix form as

]]2[[]2[][]2[ WRR ⋅+= α  .        (7)

  For decoding at step m, we used the following 

values 

=)(mα [0, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.0], 

=)(mβ [0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0].
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(b) Conventional serial TPC decoder

Fig. 9. Encoder construction and decoder structure of tur-
bo product code )( 21 CCP ×=

4.1 P-Parallel Algorithm

  A low complexity decoding approach is pro-

vided in [13]. It applies the Chase algorithm iter-

atively on the row and column decoding [7], but 

still in a serial fashion. In order to halve the de-

coding latency, a p-parallel TPC decoder is pro-

posed in this paper. As opposed to the conven-

tional serial TPC decoder, the row and column 

decoders operate in parallel and update each other 

immediately after a row and column has been de-

coded at the same time. Different than in the 

conventional serial TPC decoder, decoding time of 

the proposed algorithm is halved. Furthermore, the 

whole product codeword needs to be decoded 

row-wise or column-wise for N times before next 

iteration can begin, where N equals the column 

number and the row number of product code 

array. P-Parallel TPC decoder is a parallel decod-

ing scheme combining that p-rows and p-columns 

of Chase decoder are processed in parallel instead 

of decoding one by one as that in the original 
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scheme. For the decoder shown in Fig.9(b), the 

conventional TPC decoder needs to decode row or 

column before the next half-iteration can begin. 

Row and column decoders operate in parallel and 

update each other immediately after a row and 

column has been decoded at the same time to re-

duce the latency to halve the decoding time as 

shown in Fig.10.

Row Decoder

(P parallel

Chase

Decoder)

][R

)]m(W[ col

5.0=α

])m(R[
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)]m(W[ row ])m(R[ col
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Column Decoder
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Chase

Decoder)
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Chase
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][R
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(P parallel

Chase

Decoder)

5.0=α

Fig.10 P-parallel decoding structure

  The matrices [Wrow] and [Wcol], which are the 

row and column extrinsic information matrices, 

are passed to row or column decoder by block 

basis simultaneously. For the first iteration at 

m=0, we set [R
row(0)]=[Rcol(0)]=[R]. Let us assume 

the same code of block length n is used as the 

row and column code of the product code. As 

soon as the row and column decoder have fin-

ished decoding of all rows and columns, re-

spectively, they pass their updated matrices 

[R
row(m+1)]and [Rcol(m+1)] as inputs to the next 

decoding stage. As a result of parallel updating, 

update metric may be written as 

)]([)(][])1([ mWmRmR
colrow

⋅+=+ α

)]([)(][])1([ mWmRmR
rowcol

⋅+=+ α .       (8)

  The weight factor and reliability factor for each 

iteration m, we search optimal values by com-

puter simulation. 

{ }1.0 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5,)( =mβ   

5.0)( =mα  for m∀ .

4.2 Early Stop Algorithm

  HAD algorithm is also used for early-stopping 

algorithm. Compare each decision that was gen-

erated during the row/column Chase decoder. 

When the two sets of decisions match, stop de-

coding on the current block and return the hard 

decision bits as output.

Table 4. The average of iterations according to Eb/N0 

(the predetermined number of iterations id 6)

  Table IV shows average iteration number in ap-

plying HDA algorithm to parallel TPC decoder 

with coding rate of (31,26,3)
2and QPSK modu-

lation scheme. At EbNo is 4[dB], it just required 

about 2 iterations maintain same performance 

level. It means that decoding speed is improved 

about 66% or power consumption (cost) is 66% 

off.

4.3 Simulation Results

  The results that we present here concern BCH 

product code with several code rates. Especially, 

TPCs with one-error correcting BCH component 

codes are suitable for applications which require 

both high data and code rates. Serial (n,k,δ) is 

TPC decoder which is used to serially two BCH 

decoder in row and column decoder. P-parallel 

(n,k,δ) is TPC decoder which is used to parallel 

two BCH decoder at row and column decoder. 

For chase decoding, the number of least reliable 

bits was chosen to be 4. Our simulation results 

for two TPCs ((31.26.3)
2,(63.57.3)2), with four de-

coding iterations are given in Fig.11. 

  We observe that the performance of p-parallel 

TPC decoder(p=2) is similar to that of conven-

tional TPC decoder at BER=10
-4. In Fig.11, we 

also included the performance of a parallel 

(31.26.3) with eight iterations. This TPC has the 

same decoding latency as the conventional decod-
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ing approach with four iterations, but achieves an 

additional gain of 0.4dB at BER=10-4.
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Fig. 11 Performance of serial and parallel decoded BCH 
TPCs (p=2, IT denotes number of iteration)

Ⅴ. Conclusions

  Low latency versions of iterative decoders of 

turbo codes, low-density parity-check codes and 

turbo product codes are presented. Among of the 

latency algorithms, early-stop and parallel fash-

ioned algorithms may be applied to all of the 

iterative codes in common.

Radix-4 and dual-path processing algorithms for 

turbo decoding, sequential method and early edge 

detection algorithms for LDPC decoding, and 

p-parallel structure for TPC decoding are applied 

in order to reduce the latency and/or computa-

tional complexity.  From the performance analysis 

by computer simulation and average number of 

eliminated edge or iterations, we conclude that the 

presented algorithms provides an attractive solution 

to implementation iterative decoding in aspect to 

fast decoding speed and power consumption.
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