
논문 07-32-3-03 한국통신학회논문지 ’07-3 Vol. 32 No. 3

205

Low Latency Algorithms for Iterative Codes

Seok Soon Choi* Associate Member, Ji Won Jung* Regular Member,

Jong Tae Bae*, Min Hyuk Kim*, Associate Members, Eun A Choi** Regular Member

ABSTRACT

This paper presents low latency and/or computation algorithms of iterative codes of turbo codes, turbo

product codes and low density parity check codes for use in wireless broadband communication systems. Due

to high coding complexity of iterative codes, this paper focus on lower complexity and/or latency algorithms

that are easily implementable in hardware and further accelerate the decoding speed.

Key Words : Iterative Codes, Turbo Code, Low Density Parity Check Code, Turbo Product Code, Low Latency

 * 한국해양 학교 공학과 성통신연구실 (ms43bjt@hhu.ac.kr), ** 한국 자통신연구원 역 무선 멀티미디어 연구

 논문번호：KICS2006-03-145, 수일자 : 2006년 3월 28일, 최종논문 수일자：2006년 12월 20일

Ⅰ. Introduction

 Iterative decoding based on symbol-by-symbol

soft-in/soft-out decoding algorithm has significant

attention, due to its near Shannon-limit error per-

formance for decoding of turbo codes [1], low

density parity-check (LDPC) code [2] and turbo

product code [3]. Like maximum a posterior prob-

ability (MAP) decoding, iterative decoder proc-

esses the received symbols recursively to improve

the reliability of each symbol based on constrains

that specify the code. In the first iteration, the

decoder only uses the channel output, and gen-

erates soft output for each symbol. The output re-

liability measures of the decoded symbols at the

end of each decoding iteration are used as input

for next iteration. Therefore, the latency and com-

plexity caused by several iterations and high com-

putation order, it can be difficult to implement

the decoding in hardware and to apply the

high-speed wireless applications [4]. To solve the

latency problem, early-stop algorithms that the de-

coding iteration processes until a certain stopping

condition is satisfied, can be applied. Furthermore,

fully parallel decoder structure also can be applied

for iterative decoders to reduce the latency.

Therefore, early-stop algorithm and parallel fash-

ioned decoder can be applied to all of the iter-

ative codes in common. However, the standard

LDPC codes can have large codeword length and

it can be difficult to implement hardware in a

fully parallel way. For example, The Digital

Video Broadcasting (DVB-S2) recommends that

LDPC coded block size be 64800, and the num-

ber of iteration be about 70 in the case of half

coding rate. A large number of iterations for a

large block size gives rise to a large number of

computation operations, mass power consumption,

and decoding delay. Furthermore, a large number

of block size make impossible to implement by

fully parallel way. It is necessary to use partial

parallel way. In [5], "shuffled" method were pre-

sented to reduced the required number of

iterations. However it requires double hardware

size compared to conventional one. In LDPC co-

des cases, this paper proposes two kinds of sim-

plified complexity-reduced algorithm. First, sequen-

tial decoding with partial group is proposed. It

has the same H/W complexity, and a few num-

bers of iteration are required at the same perform-

ance in comparison with a conventional decoder

algorithm. Secondly, an early detection method for

reducing the computational complexity is

proposed. Using a confidence criterion, some bit

www.dbpia.co.kr

한국통신학회논문지 ’07-3 Vol. 32 No. 3

206

nodes and check node edges are detected early on

during decoding. In this way, because early de-

tected edges are not computed from following

iterations, the computational complexity of further

processing is reduced. In turbo codes cases, the

latency caused by serially calculations of forward

and backward metric can be dramatically reduced

by using a radix-4 and dual-path processing.

 The aim of this paper is to introduce several

low-latency and/or complexity algorithms which

further accelerate the decoding speed for turbo co-

des, LDPC codes and turbo product codes.

Ⅱ. Low Latency Algorithms of

Turbo Code

 Since convolutional turbo codes are very flexi-

ble codes, easily adaptable to a large rate of

block sizes and coding rates, they have been

adopted in the DVB standard for Return Channel

via Satellite(DVB-RCS). The use of RCST(RCS

Terminal) includes individual and collective in-

stallation(e.g. SMATV) in domestic environment.

However, the applications of turbo codes are lim-

ited to specific data such as low data-rate services

because of their limit of decoding speed.

Therefore, it is highly required to develop the

high-speed turbo decoder. To solve the problem

with latency of turbo decoder, four kinds of algo-

rithms are introduced. The first algorithm is rad-

ix-4 algorithm and the second algorithm is the

dual-path processing algorithm. The third algo-

rithm is the full parallel decoding algorithm. The

fourth algorithm is the early-stop algorithm based

on hard-decision-aided (HDA) scheme. The decod-

ing iteration processes until a certain stopping

condition is satisfied Then hard decisions are

made based on the reliability measures of the de-

coded symbol at the last decoding iteration

2.1 Radix-4 Algorithm

 The first algorithm is the radix-4 decoding al-

gorithm, where the previous state at t=k-2 goes

forward to the current state at t=k, and the re-

verse state at t=k+2 goes backwards from the cur-

rent one such that the time interval from t=k-2 to

t=k is merged into t=k. Therefore, we can decode

two source data bits at the same time without

any performance degradation while reducing the

block size buffered in memory. Using the unified

approach to state metrics, a 2
v-1 -state trellis can

be iterated from time index n-k to n by decom-

posing the trellis into 2
v-k sub-trellises, each con-

sisting of k iterations of a 2k -state trellis. Each

2
k -state's sub-trellis can be collapsed into an

equivalent one-stage radix-2k trellis by applying k

levels of look-ahead to the recursive update.

Collapsing the trellis does not affect the decoder

performance since there is a one-to-one mapping

between the collapsed trellis and radix-2 trellis.

An example of the decomposition of a 4-state

radix-2 into an equivalent radix-4 trellis using one

stage of look-ahead is shown in Fig. 1, where

v=3, g1=(7)octal, g2=(5)octal with v denoting the

constraint length.

 (a) 4-state radix-2 trellis (b) 4-state radix-4 trellis

Fig. 1. Four-state radix-2 to radix-4 trellis

2.2 Dual-Path Processing Algorithm

 In a conventional scheme, the decoder must

wait for finishing the backward state metric

(BSM) (or forward state metric (FSM)) calcu-

lations before calculating the extrinsic information.

The dual-path processing method doesn't need to

wait. The decoder calculates the FSM (left to

right) and BSM (right to left), simultaneously.

When the FSM and BSM reach the same point,

then the decoder begins to calculate the extrinsic

information. Fig. 2 shows the operation of du-

al-path processing.

www.dbpia.co.kr

논문 / Low Latency Algorithms for Iterative Codes

207

Fig. 2. Dual-path processing algorithm

 The procedure of the dual-path processing is as

follows.

 Step 1: Initialize the forward state metric and

backward state metric.

else

mforms

else

mforms

i

b

i

N

ii

,0

01))((

,0

01))((
00

=

==

=

==

β

α

 (1)

 and

 are FSM and BSM at time of

k, information bit of i, and state of m.

 Step 2: After receiving the whole set of re-

ceived symbols of N, FSMs (left to right) and

BSMs (right to left) are calculated simultaneously.

())12/,...,0())((

))((
2

exp()(

1

0

1

2

−=

+=

∑
=

∧

∧

NkmSα

i,mYyix
σ

mα

j

j

b

j

k-

kkk

i

k

 (2-1)

() ()()2/,...,1

)))(((
2

exp()()(
1

0

11121

NNk

mj,SYyjx
σ

mβmβ
j

i

fkkk

j

k

i

k

−=

+=∑
=

++++

∧∧

(2-2)

 Step 3: At the middle point, begin to calculate

the log likelihood ratios (LLR).

))1(),...,2/((

)()(

)()(

log)(
00

11

−=

=

∑

∑
→

NNk

mm

mm

dL

m

kk

m

kk

k

βα

βα

 (3-1)

)0,...,1)2/((

)()(

)()(

log)(
00

11

−=

=

∑

∑
←

Nk

mm

mm

dL

m

kk

m

kk

k

βα

βα

 (3-2)

→

)(
k

dL means LLR outputs in the direction of right

to left and
←

)(
k

dL means LLR outputs in the di-

rection of left to right.

2.3 Parallel Algorithm

 Different from the original turbo decoder con-

sisting of two decoders concatenated in a serial

fashion, we present a parallel decoder structure

using the parallel sum, where the two decoders

operate in parallel and update each other immedi-

ately and simultaneously after each one has com-

pleted its decoding. In decoding the estimated da-

ta, we use the sum of the LLR outputs of the

parallel decoders to reduce the latency to half

while maintaining the same performance level.

Fig.3. Parallel structure of turbo decoder

2.4 Early Stop Algorithm

 The decoding iteration processes until a certain

stopping condition is satisfied, hard decisions are

made based on the reliability measures of the de-

coded symbol at the last decoding iteration. HAD

algorithm is used as an early-stop algorithm. It

compares each decision generated by the two de-

coders, and when the two sets of decisions match,

it stops decoding on the current block and outputs

the hard decision bits. Table 1 shows the average

www.dbpia.co.kr

한국통신학회논문지 ’07-3 Vol. 32 No. 3

208

number of iterations in an HAD algorithm. At an

Eb/N0 of 2 dB, it requires about 2.8 iterations rel-

ative to 8 for a given performance. This means

that the decoding speed is improved or the power

consumption (cost) is reduced by 64.6 %.

Table 1. The average number of iterations according to
Eb/N0 (the predetermined number of iterations is 8)

2.5 Simulation Results

 The bit-error rate (BER) performance of the

new high-speed turbo decoder architecture combin-

ing the four schemes is analyzed in this section.

For a comparison purpose, Fig. 4 shows the per-

formance of the new decoder and a conventional

one using v=3 turbo codes with generator poly-

nomials g1=(7)octal, g2=(5)octals a function of inter-

leaving size N and as a function of the number

of iterations I. In the radix-4 method, the symbol

interleaving, takes an information stream of length

Ns composed of 2-bit words and feeds it to a

random interleaving. From the figure, it can be

verified that the performances of the proposed de-

coder architecture is very close to the conven-

tional decoder for small block sizes (less than

300 bits). For large interleaving sizes (more than

300 bits), the performance of the new decoder is

slightly degraded relative to the conventional one

because the randomness of the symbol interleaving

is reduced. In addition, although parallel fashioned

decoder reduces the decoding delay of serial de-

coding by half, the extrinsic messages are not

taken advantage of as soon as they become avail-

able, because the extrinsic messages are delivered

to component decoders only after each iteration is

complete. This disadvantage is maybe solved by

applying "replica shuffled algorithm" in Reference

[5].

(a) Convention algorithm (N=200)

(b) Proposed algorithm (N = 100)

(c) Convention algorithm (N=300)

(d) Proposed algorithm (N = 150)

Fig. 4. Performance of the proposed decoder over an
AWGN channel compared with that of a conventional
algorithm as a function of interleaver size and number of
iterations.

www.dbpia.co.kr

논문 / Low Latency Algorithms for Iterative Codes

209

Ⅲ. Low Latency Algorithms of

LDPC codes

 The high definition television (HDTV) satellite

standard, known as the Digital Video Broadcasting

(DVB-S2) transmission system, employs a low

density parity check (LDPC) coding technique as

a channel coding scheme. Unlike turbo codes,

LDPC codes have an easily parallelizable decod-

ing algorithm, which consists of simple operations

such as addition, comparison, and creation of a

look-up table. Moreover, the degree of parallelism

is 'adjustable', which makes it easy to trade-off

both throughput and complexity. However, the

DVB-S2 system requires a large block size and

large number of iterations to near Shannon's

limit. The standard recommends that the LDPC

coded block size be 64800, and the number of

iteration be about 70 in the case of a half-coding

rate. A large number of iterations for a large

block size give rise to a large number of compu-

tation operations, mass power consumption, and

decoding delay. It is necessary to reduce the iter-

ation numbers and computation operations without

performance degradation in order to implement an

LDPC decoder with low power consumption. This

paper proposes two kinds of simplified complex-

ity-reduced algorithms. First, sequential decoding

with a partial group is proposed. It has the same

hardware complexity, and a fewer number of iter-

ations is required at the same level of perform-

ance in comparison with a conventional decoder

algorithm. The computation of bit node weights

and check node weights can seem to be as an

approximate projection based on the parity-check

matrix; the grouping simply says that this projec-

tion can be done in several steps to obtain an ap-

proximate answer. Secondly, an early detection

method for reducing the computational complexity

is proposed. Using a confidence criterion, some

bit nodes and check node edges are detected early

on during decoding. In this way, because early

detected edges are not computed from following

iterations, the computational complexity of further

processing is reduced.

3.1 LDPC Decoding Algorithm

 The purpose of the decoder is to determine the

transmitted values of the bits. Bit nodes and

check nodes communicate with each other to ac-

complish this goal. The decoding starts by assign-

ing the channel values to the outgoing edges,

from bit nodes to check nodes. Upon receiving

them, the check nodes make use of the parity

check equations to update the bit node in-

formation and send it back. Each bit node then

performs a soft majority vote among the in-

formation reaching him. At this point, if the hard

decisions on the bits satisfy all of the parity

check equations, it indicates that a valid codeword

has been found and the process stops. Otherwise,

the bit nodes go on sending the results of their

soft majority votes to the check nodes. In the fol-

lowing sections, we describe the decoding algo-

rithm in detail. The number of edges adjacent to

a node is called the degree of that node.

 Step 1. Initialization

 The decoding starts by assigning the channel

transmit values, rn , to the outgoing edges, from

bit nodes to check nodes. The initial channel val-

ue is shown in (1).

1,,1,0

),
2

(
2

−=

=⋅−=

Nn

LrLu
cncn

…

σ

 (4)

where, N is the codeword size and σ is Gaussian

noise variance.

Step 2. Check Node Update

Let us denote the incoming messages to the

check node k from its dc adjacent bit nodes by

kn
v

→1 , kn
v

→2 , … , kndc
v

→ , as shown in Fig.

5(a). Our aim is to compute the outgoing mes-

sages from check node k back to dcadjacent bit

nodes. Let us denote these messages by ,

1nk
w

→

2nk
w

→ ,…, dcnk
w

→ . Each outgoing message from

check node k to its adjacent bit nodes is com-

puted as

www.dbpia.co.kr

한국통신학회논문지 ’07-3 Vol. 32 No. 3

210

()

).1(log)1(log),(

),,(),min()sgn()sgn(),(

,,...,,,...,,
1121

baba

g

g

knknknknknnk

eebaLUT

baLUTbababag

vvvvvgw
dciii

−−+−

→→→→→→

+−+=

+××=

=
+−

 (5)

Check node k

1nkw →

knv →1

2nkw →

knv →2
3nkw →

kn
v

→3

kndc
v

→

dcnkw →

Bit node n

1knv →

nk
w

→1

2kn
v

→
nkw →2

nkw →3

3knv →

nkdv
w

→

dvkn
v

→

.

.

.

.

.

.

.

Fig. 5. Message update at (a) check nodes and (b) bit
nodes

 In practice, the LUTg(.) function is implemented

using a small look-up table.

 Step 3. Bit Node Update

 Let us denote the incoming messages to bit

node n from its dv adjacent check nodes by

nk
w

→1 , nk
w

→2 ,..., nkdv
w

→ , as shown in Fig.

5(b). Our aim is to compute the outgoing mes-

sages from bit node n back to dv adjacent check

nodes. Let us denote these messages by 1kn
v

→ ,

2kn
v

→ ,..., dvkn
v

→ . They are computed as

∑
≠

→→
+=

ij

nknkn ji
wuv

. (6)

 Intuitively, this is a soft majority vote on the

value of bit n, using all relevant information ex-

cept nk j
w

→

3.2 Sequential Decoding Algorithm

with Partial Group

 In this paper, we propose a new decoding

structure. First, we divide check nodes by p

groups. The groups are in general randomly chos-

en so as to minimize the cycle-4 occurrence.

Next, we decode group by group in a serial

fashion. For example, Fig. 6 shows the decoding

procedure in the case when p equals 2. Check

node and bit node probabilities are calculated at

the first group, as shown in Fig. 6(a). When the

decoding process of the first group has been com-

pleted, the second group initiates the decoding

process with the calculated bit node probability

from the first group, as shown in Fig. 6(b). The

proposed algorithm changes only the decoding or-

der without any performance degradation.

 If p equals one, the result is the same as a

conventional decoder. Like the turbo decoding, the

resultant extrinsic information of the first decoder

is delivered to the second decoder. The proposed

algorithm of LDPC decoding is the same theory.

Group 1

Group 2

Bit node

Check node

Bit node

Check node

Fig. 6. The bit and check node update procedure (p=2)

at (a) the first group (b) the second group

3.3 Early Edge Detection Algorithm

 Another approach is early edge detection for re-

ducing the computational complexity. The early

edge detection method is based on the observation

that bit nodes and check nodes with a high

log-likelihood value can be considered reliable. So

detected bit node edges and check node edges are

negligible for the next iteration. This means that

www.dbpia.co.kr

논문 / Low Latency Algorithms for Iterative Codes

211

we don't need to calculate the bit node edges and

check node edge updates for a detected edge

from following iterations. Therefore, computational

complexity of the next iterations is reduced. For

early edge detection for the LDPC decoder, the

proceedings are as follows:

)6(.qdoelse

1][tBitEarlyDetecthen,

updatesnodeBit3.Step

)5(.qdoelse

1][tCheckEarlyDetecthen,f

updatesnodeCheck2.Step

0][tBitEarlyDetec

0][tCheckEarlyDetec

tionInitializa1.Step

E

knTv

E

nkTwi

kn

nk

ibkn

icnk

i

i

i

i

=→≥

=→≥

=→

=→

→

→

 If][⋅tCheckEarlyDetec or][⋅tBitEarlyDetec are

equal to one, we don't need to calculate the bit

node and check node updates, we just deliver the

previous values to the bit nodes or check nodes.

Therefore, it is very important to choose the early

detection threshold: Tb for bit nodes and Tc for

check nodes.

3.4 Simulation Results

 Fig. 7 shows the simulation results with code-

word size N=64800 and information size K=32400

(number of check node, M=NK), comparing the

BER performances of the conventional and se-

quential LDPC decoders. With a smaller number

of iterations (Nr), the sequential decoding scheme

with p = 2 (Nr = 35) shows the performance al-

most the same as that of a conventional scheme

with p = 1 (Nr = 70). Fixing on Tc=10, we eval-

uated the performance for various values of Tb.

As shown in Fig. 8, the performance of the early

detection method with Tb=18 is the same as that

of a conventional scheme.

 The required number of operations associated

with the conventional and early detection algo-

rithms are summarized in Table 2, where dc
* de-

notes the average number of early detected edges

for each check node and N* denotes the average

number of early detected bit nodes. The decoding

complexity of an LDPC decoder is evaluated

based on Eq.(5) and Eq.(6).

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E
R

Eb/N0 (dB)

0 1 2 3 4 5 6 7 8 9 10

Uncoded QPSK

Conventional decoder (Nr=70)

Sequential decoder (Nr=35)

Fig. 7. Bit error rate (BER) comparison between conven-

tional LDPC decoder and sequential LDPC decoder(p=2)

0.65 0.7 0.75 0.8 0.85 0.9

10-7

10-6

10-5

10-4

10-3

10-2

10-1
B
E
R

Eb/N0 (dB)

Early detection (Tb=10)
Early detection (Tb=15)
Early detection (Tb=18)
Conventional scheme (Tb=∞)

Fig. 8. BER performance for different Tb (N=64800,

K=32400 dc=7, dv=13

Fixing on the values of Tb =18 and Tc =10,

Table 3 shows the simulated dc
* and N* from Nr

iterations at Eb/N0=1 (dB) in the environment of

N=64800, K=32400, M=32400, and dc=7, dv=13.

As shown in Table 2, the computational complex-

ity of the early detected method is about 50% off

in the case of the check node update, and 99%

off in the case of the check node update com-

pared to the standard LDPC decoder scheme.

Table 2. Decoding complexity of conventioanl and early
detection methods

www.dbpia.co.kr

한국통신학회논문지 ’07-3 Vol. 32 No. 3

212

Table 3. The number of early detected edges

Ⅳ. I. Low Latency Algorithms of

TPC codes

 The real difficulty in the field of channel cod-

ing is essentially a problem of decoding complex-

ity of powerful codes. Recently, there has been

intensive focus on turbo product code (TPC)

which has low latency and simple structures com-

pare with turbo code. It can achieve performances

near Shannon limit. TPCs are two dimensional

code constructed from small component codes. A

two dimensional turbo product code(TPC) can be

noted as C1⊗C2, where C1 and C2 are two line-

ar block codes. Place k1⊗k2 information symbols

in array of k1 rows and k2 columns, and then

encode the k1 rows using code C2. Afterwards,

the resulting k2 columns are encoded using code

C1. Usually, we choose C1 the same as C2. The

conventional TPC decoder performs row and col-

umn decoding in a serial fashion. A soft input

soft output(SISO) decoder, such as MAP, is used

to decode each row or column. The output of

decoder is the reliability of the decision dj and

the relationship expression between soft-out rj
` and

soft-in rj is given by rj
`=rj+αwj . The extrinsic in-

formation wj for the j-th bit position is given by

wj=βdj . Where β is a reliability factor to esti-

mate wj in case no competing codeword can be

found. α is a weight factor to combat high stand-

ard deviation in wj and high BER during the first

iterations. Fig.9 shows encoder construction and

decoder structure.

 The operations above are performed on all bits

of a product codeword, shown in Fig 2., hence,

Eq.(1) can be expressed in matrix form as

]]2[[]2[][]2[WRR ⋅+= α . (7)

 For decoding at step m, we used the following

values

=)(mα [0, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.0],

=)(mβ [0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0].

2
n

1
n

2
k

1k

Checks
on

row
Information Symbols

Check on columns
Checks

on
Checks

2
n

1
n

2
k

1k

Checks
on

row
Information Symbols

Check on columns
Checks

on
Checks

(a) Encoder construction

Turbo decoding

Of Rows

Turbo decoding

Of Columns

Delay line
][R

)]([mW

)(mα)(mβ

)]1([+mW

][R][R

])([mR])1([+mR

)1(+mβ

Delay line

)1(+mα

Turbo decoding

Of Rows

Turbo decoding

Of Columns

Delay line
][R

)]([mW

)(mα)(mβ

)]1([+mW

][R][R

])([mR])1([+mR

)1(+mβ

Delay line

)1(+mα

(b) Conventional serial TPC decoder

Fig. 9. Encoder construction and decoder structure of tur-
bo product code)(21 CCP ×=

4.1 P-Parallel Algorithm

 A low complexity decoding approach is pro-

vided in [13]. It applies the Chase algorithm iter-

atively on the row and column decoding [7], but

still in a serial fashion. In order to halve the de-

coding latency, a p-parallel TPC decoder is pro-

posed in this paper. As opposed to the conven-

tional serial TPC decoder, the row and column

decoders operate in parallel and update each other

immediately after a row and column has been de-

coded at the same time. Different than in the

conventional serial TPC decoder, decoding time of

the proposed algorithm is halved. Furthermore, the

whole product codeword needs to be decoded

row-wise or column-wise for N times before next

iteration can begin, where N equals the column

number and the row number of product code

array. P-Parallel TPC decoder is a parallel decod-

ing scheme combining that p-rows and p-columns

of Chase decoder are processed in parallel instead

of decoding one by one as that in the original

www.dbpia.co.kr

논문 / Low Latency Algorithms for Iterative Codes

213

scheme. For the decoder shown in Fig.9(b), the

conventional TPC decoder needs to decode row or

column before the next half-iteration can begin.

Row and column decoders operate in parallel and

update each other immediately after a row and

column has been decoded at the same time to re-

duce the latency to halve the decoding time as

shown in Fig.10.

Row Decoder

(P parallel

Chase

Decoder)

][R

)]m(W[col

5.0=α

])m(R[
row

)]m(W[row])m(R[col

)]m(W[row

)]m(W[col

Column Decoder

(P parallel

Chase

Decoder)

5.0=α

Row Decoder

(P parallel

Chase

Decoder)

][R

)]m(W[col

5.0=α

])m(R[
row

)]m(W[row])m(R[col

)]m(W[row

)]m(W[col

Column Decoder

(P parallel

Chase

Decoder)

5.0=α

Fig.10 P-parallel decoding structure

 The matrices [Wrow] and [Wcol], which are the

row and column extrinsic information matrices,

are passed to row or column decoder by block

basis simultaneously. For the first iteration at

m=0, we set [R
row(0)]=[Rcol(0)]=[R]. Let us assume

the same code of block length n is used as the

row and column code of the product code. As

soon as the row and column decoder have fin-

ished decoding of all rows and columns, re-

spectively, they pass their updated matrices

[R
row(m+1)]and [Rcol(m+1)] as inputs to the next

decoding stage. As a result of parallel updating,

update metric may be written as

)]([)(][])1([mWmRmR
colrow

⋅+=+ α

)]([)(][])1([mWmRmR
rowcol

⋅+=+ α . (8)

 The weight factor and reliability factor for each

iteration m, we search optimal values by com-

puter simulation.

{ }1.0 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5,)(=mβ

5.0)(=mα for m∀ .

4.2 Early Stop Algorithm

 HAD algorithm is also used for early-stopping

algorithm. Compare each decision that was gen-

erated during the row/column Chase decoder.

When the two sets of decisions match, stop de-

coding on the current block and return the hard

decision bits as output.

Table 4. The average of iterations according to Eb/N0

(the predetermined number of iterations id 6)

 Table IV shows average iteration number in ap-

plying HDA algorithm to parallel TPC decoder

with coding rate of (31,26,3)
2and QPSK modu-

lation scheme. At EbNo is 4[dB], it just required

about 2 iterations maintain same performance

level. It means that decoding speed is improved

about 66% or power consumption (cost) is 66%

off.

4.3 Simulation Results

 The results that we present here concern BCH

product code with several code rates. Especially,

TPCs with one-error correcting BCH component

codes are suitable for applications which require

both high data and code rates. Serial (n,k,δ) is

TPC decoder which is used to serially two BCH

decoder in row and column decoder. P-parallel

(n,k,δ) is TPC decoder which is used to parallel

two BCH decoder at row and column decoder.

For chase decoding, the number of least reliable

bits was chosen to be 4. Our simulation results

for two TPCs ((31.26.3)
2,(63.57.3)2), with four de-

coding iterations are given in Fig.11.

 We observe that the performance of p-parallel

TPC decoder(p=2) is similar to that of conven-

tional TPC decoder at BER=10
-4. In Fig.11, we

also included the performance of a parallel

(31.26.3) with eight iterations. This TPC has the

same decoding latency as the conventional decod-

www.dbpia.co.kr

한국통신학회논문지 ’07-3 Vol. 32 No. 3

214

ing approach with four iterations, but achieves an

additional gain of 0.4dB at BER=10-4.

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

serial(31.26.3)2 IT=4

parallel(31.26.3)2 IT=4

parallel(31.26.3)2 IT=8

uncoded QPSK

BER

Eb/No[dB]

(a) TPC (31.26.3)
2

0 1 2 3 4 5 6 7 8 9 10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

serial(63.57.3)2 IT=4

parallel(63.57.3)2 IT=4

uncoded QPSK

BER

Eb/No[dB]

(b) TPC (63.57.3)2

Fig. 11 Performance of serial and parallel decoded BCH
TPCs (p=2, IT denotes number of iteration)

Ⅴ. Conclusions

 Low latency versions of iterative decoders of

turbo codes, low-density parity-check codes and

turbo product codes are presented. Among of the

latency algorithms, early-stop and parallel fash-

ioned algorithms may be applied to all of the

iterative codes in common.

Radix-4 and dual-path processing algorithms for

turbo decoding, sequential method and early edge

detection algorithms for LDPC decoding, and

p-parallel structure for TPC decoding are applied

in order to reduce the latency and/or computa-

tional complexity. From the performance analysis

by computer simulation and average number of

eliminated edge or iterations, we conclude that the

presented algorithms provides an attractive solution

to implementation iterative decoding in aspect to

fast decoding speed and power consumption.

References

[1] C. Berrou, A. Glavieux, and P.Thitimajshima,

"Near Shannon Limit Error-Correcting Code and

Decoding : Turbo Codes", IEEE Trans. Commun.,

vol. 44, pp.1261-1271,1998.

[2] D. J. C. Mackay and R. M. Neal, "Near Shannon

Limit Performance of Low-Density Parity-Check

Codes,"Electron. Letter, Vol.32, PP.

1645-1646,Aug.1996.

[3] R.M. Pyndiah, "Near-optimum decoding of prod-

uct codes: Block turbo codes," IEEE Trans.

Commun., vol. 46, pp1003-1010, Aug. 1998.

[4] S.S. Pietroloon, "Implementation and

Performance of a Turbo/MAP Decoder",

International Journal of Satellite Communication

vol. 16, pp.23-46, 1998.

[5] J.Zhang and M.Fossorier, " Shuffled Belief

Propagation Decoding," IEEE Trans. Commun.,

Feb. 2005.

[6] D.Chase, "A class of algorithms for decoding

block codes with channel measurement in-

formation," IEEE Trans.Inform. Theory, vol.

IT-18,pp.170-182,Jan.1972

최 석 순 (Seok Soon Choi) 회원

2007년 2월: 한국해양 학교

공학과(공학사)

2007년 3월 ~ 재: 한국해양 학

교 공학과 석사과정

< 심분야> 성통신, 이동통신,

변․복조기술, 채 코딩, FPGA

기술 등

www.dbpia.co.kr

논문 / Low Latency Algorithms for Iterative Codes

215

정 지 원 (Ji Won Jung) 정회원

1989년 2월 :성균 학교 자

공학과(공학사)

1991년 2월 :성균 학교 자

공학과(공학석사)

1995년 2월 :성균 학교 정보

공학과(공학박사)

1991년 1월～ 1992년 2월 : LG

정보통신연구소 연구원

1995년 9월 ～ 1996년 8월 : 한국통신 성통신연구실

선임연구원

1997년 3월 ～ 1998년12월 : 한국 자통신연구원 빙

연구원

1996년 9월 ～ 재: 한국해양 학교 공학과 정교수

2001년 8월 ～ 2002년 8월 : 캐나다 NSERC

Fellowship (Communication Research Center 근무)

< 심분야> 성통신, 이동통신, 변.복조기술, 채 코

딩, FPGA 기술 등

배 종 태 (Jong Tae Bae) 회원

2007년 2월: 한국해양 학교

공학과(공학사)

2007년 3월 ~ 재: 한국해양 학

교 공학과 석사과정

< 심분야> 성통신, 이동통신,

변․복조기술, 채 코딩, FPGA

기술 등

김 민 (Min Hyuk Kim) 회원

2006년 2월: 한국해양 학교

공학과(공학사)

2006년 3월 ~ 재: 한국해양 학

교 공학과 석사과정

< 심분야> 성통신, 이동통신,

변․복조기술, 채 코딩, FPGA

기술 등

최 은 아 (Eun A Choi) 정회원

1998년 2월: 북 학교 수학과

(이학사)

2000년 2월: 북 학교 학원

정보통신공학과(공학석사)

2000년 4월 ~ 재: 한국 자통신

연구원 역 멀티미디어 연

구 선임 연구원

< 심분야> 채 코딩, 디지털통신, 성통신 등

www.dbpia.co.kr

	Low Latency Algorithms for Iterative Codes
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Low Latency Algorithms of Turbo Code
	Ⅲ. Low Latency Algorithms of LDPC codes
	Ⅳ. I. Low Latency Algorithms of TPC codes
	Ⅴ. Conclusions
	References

