

16-APSK 변조 방식의 성능 및 비선형 채널에서의 동작 특성 분석

준회원 강석 헌*, 김상 태*, 종신회원 성원 진*

Performance and Operating Characteristics Analysis of the 16-APSK Modulation over Nonlinear Channels

Seokheon Kang*, Sangtae Kim* Associate Members, Wonjin Sung* Lifelong Member

요 약

APSK(Amplitude Phase Shift Keying) 계열의 디지털 변조 방식은 전송 심볼들이 성상도 상에서 원형으로 분 포해 있는 구조적 특성을 갖고 있다. 이러한 구조로 인하여 QAM(Quadrature Amplitude Modulation) 계열의 변 조 방식과 비교하여 평균 전력 대비 최대 전력의 크기를 감소시키는 효과를 얻을 수 있으며, 비선형 채널 환경에 서 전송 시 성능 열화 정도를 감소시킬 수 있다. 이와 같은 장점으로, APSK 변조 방식은 최근 DVB-S2(Digital Video Broadcasting - Satellite, Version 2)를 포함하는 위성 통신 시스템에서 표준으로 채택되고 있다^[1]. 본 논문 에서는 일정 크기 이상의 입력 전력 크기에 대해서는 출력 전력 크기가 포화되는 특성을 갖는 채널 모델을 사용 하여, 16APSK 변조 방식 적용의 비트 오울 (BER; Bit Error Rate)의 상한 근사식을 유도하고 실제 실험 결과와 비교하여 정확성을 검증한다. 또한 유도식을 활용하여 비트 오율을 최소화시키는 입력 전력의 크기를 결정하였으 며, 16APSK 내각원 반지름과 외각원 반지름 비율 및 비선형 채널의 포화 특성에 따른 성능 최적화 방안을 제시 한다.

Key Words : APSK modulation, QAM modulation, Nonlinear channels, Bit error analysis, Satellite communication systems

ABSTRACT

APSK (Amplitude Phase Shift Keying) digital modulation is characterized by the circular positioning of the transmission symbols in the constellation diagram. Due to such structural characteristics, the peak-to-average power ratio of the APSK modulation is lower than that of the QAM (Quadrature Amplitude Modulation), and the amount of performance degradation over nonlinear channels can be mitigated. The APSK modulation scheme has recently been adopted as satellite communication system standards including the DVB-S2 (Digital Video Broadcasting - Satellite, Version 2)^[1]. In this paper, a BER (Bit Error Rate) upper bound approximation formula is derived using the channel model with the output power saturation characteristics, and its accuracy is demonstrated. Using the derived formula, the input power level that minimizes the BER is determined. The optimized performance based on the radii ratio of the 16APSK constellation and the channel saturation level is also presented.

^{*} 서강대학교 전자공학과 디지털전송연구실 (wsung@sogang.ac.kr) 논문번호: KICS2007-01-013, 접수일자: 2007년 1월 15일, 최종논문접수일자: 2007년 3월 27일

I. 서 론

비선형 채널 환경은 일반적으로 통신 시스템의 전 송 성능 열화를 발생시키며, 특히 QAM과 같은 고 밀도 변조 방식에서 그 열화의 정도가 심하다. 최근 위성 통신 시스템의 표준으로 채택되고 있는 APSK 계열의 변조 방식의 경우, 성상도 상에 원형으로 분 포되어 있는 심볼 배치 형태로 인해 비선형 채널 환 경에서의 성능 열화를 감소시킬 수 있는 장점을 가 진다^[1]. 16APSK의 경우 2개의 신호 크기 (amplitude)를 나타내는 내원 (inner circle)과 외원 (outer circle)에 각각 4개와 12개의 심볼이 존재한다. 동일한 전송률을 가지는 16QAM의 경우 정방형의 형태로 매핑된 16개 심볼이 존재하며, 평균 전력 대 비 최대 전력값이 16APSK보다 크다. 따라서 APSK 의 경우 비선형 채널 환경에서 발생하는 성상도 왜 곡 현상을 완화시킬 수 있으며, BER 측면에서의 성 능 열화 정도가 감소된다. OAM 계열 변조 방식의 성능은 잘 알려져 있으며^{[21-[5]}, 비선형 환경으로 인한 QAM 변조 방식의 성능 열화 분석에 대한 연구 결 과도 제시되었다^[6-18]. 본 논문은 일정 크기 이상의 입력 신호에 대해 포화 특성을 갖는 soft-limiter 비 선형 채널 모델¹⁹이 사용된 경우를 고려하여, 16APSK의 BER 성능 분석 및 최적화 방안 제시를 목적으로 한다. Soft-limiter 모델은 통신 채널 자체 또는 전력 증폭기의 비선형성에 의해 발생하는 포화 현상에 대한 간략화된 형태로써, 상한값 이상의 입력 신호 진폭에 대해서는 출력 신호 진폭 역시 포화되 는 특성을 가지고 있다. 본 논문에서는 비선형 채널 특성에 의한 성상도 왜곡을 구간 별로 분류하여 오 율의 상한 근사식을 유도하고, 시뮬레이션을 통한 성 능 평가 결과와 비교하여 그 정확성을 검증한다. 또 한 유도 결과를 이용하여, 최적의 성능을 보이는 입 력 전력 크기가 비선형 채널의 포화값 및 내·외원 반지름의 비율에 의해 변화함을 보이고 주어진 파라 미터에 대한 최적값을 제시한다. 본 논문의 구성은 다음과 같다. II장에서는 16APSK 성상도와 비선형 채널 모델 관련 주요 파라미터에 대해 기술한다. III 장에서는 16APSK의 BER 근사식을 유도하고, soft-limiter 채널 모델 적용 시 왜곡 구간 별 심볼 거리에 따른 성능 왜곡 정도를 분석하며 실험 결과 를 통해 정확성을 검증한다. IV장에서는 유도된 BER 근사식 각 항의 특성 파악을 통해 BER이 최 소가 되는 입력 전력과 채널 비선형 특성 및 성상도 형태의 관계를 제시한다. V장에서는 비선형 환경에 서 16APSK의 성능 이득을 검증하기 위해 16QAM 과의 실험적 성능 비교 결과를 보이며, VI장에서 결 론을 맺는다.

II. 16APSK 성상도 및 비선형 채널 모델의 주요 파라미터

16APSK의 성상도 형태는 그림 1과 같다. 성상도 의 내원에는 4개, 외원에는 12개의 심볼이 분포하여 있으며, 평균 심볼 에너지 *Es*는 다음과 같이 내원 반지름 *R*1과 외원 반지름 *R*2에 의해 표현된다.

$$E_{S} = (R_{1}^{2} + 3R_{1}^{2})/4 \tag{1}$$

내원과 외원 반지름의 비율을 γ로 정의하며, 이는 응용 시스템에 따라 변화될 수 있는 값이다^[1].

$$\gamma = R_2 / R_1 \tag{2}$$

수식 (1)과 (2)로부터 다음 관계를 얻는다.

$$R_1 = \sqrt{\frac{4E_S}{1+3\gamma^2}} \tag{3}$$

그림 1. 16APSK의 성상도 및 심볼 매핑 형태

본 논문의 실험 및 분석에 사용된 soft-limiter 비 선형 채널 모델의 입출력 전달 특성은 그림 2와 같 다. *P*_i를 입력 전력, *P*_o를 출력 전력, *K*를 포화 전력 값이라 할 때 그림 2의 입출력 전달 특성은 다음과 같이 나타낼 수 있다.

$$P_o = \begin{cases} P_i , & P_i < K \\ K, & P_i \ge K \end{cases}$$
(4)

포화 전력값 K는 선형 구간의 상한 전력을 의미

하며, 단방향 잡음 전력 스펙트럼 밀도 №의 상수배 로 표현할 수 있다.

$$K = \alpha N_0 \tag{5}$$

이 때 α는 비선형 채널의 상한 전력을 결정하는 상 수 파라미터이다. 수식 (3)과 (5)를 이용하면 다음의 관계식을 얻을 수 있다.

$$K = \frac{\alpha (1+3\gamma^2)}{4E_{S}/N_0} R_1^2$$
 (6)

Ⅲ. 성상도 변화에 따른 16APSK BER 성능 분석식 유도

M-ary 변조 방식의 심볼 오율 상한값을 다음과 같은 union bound 형태로 나타낼 수 있다^[3].

$$\begin{split} P(E) &= \frac{1}{M} \sum_{i=1}^{M} P(E|s_i) \le \frac{1}{M} \sum_{i=1}^{M} \sum_{\substack{k=1\\k \neq i}}^{M} P(s_k|s_i), \\ P(s_k|s_i) &= Q \left(\frac{d_{i,k}}{\sqrt{2N_0}} \right) \end{split}$$
(7)

이 때, $P(E|s_i)$ 는 심볼 s, 전송 시 오류가 발생할 조건 부 확률, $P(s_k|s_i)$ 는 심볼 s, 전송 시 심볼 s, 로 오류 가 발생할 조건부 확률을 각각 나타내며, $d_{i,k}$ 는 성상 도 상에서 심볼 s,와 s_k 간의 유클리드 거리이다. 16APSK의 경우 심볼 오율은

$$P(E) = \frac{1}{16} (P(E|s_1) + P(E|s_2) + \ldots + P(E|s_{16}))$$
 (8)

과 같이 나타내어지며, 그림 1에서 관찰되는 심볼들 의 대칭성을 활용하면

$$P(E) = \frac{1}{4} (P(E|s_1) + 2P(E|s_3) + P(E|s_4))$$
(9)

으로 간략화된다. 여기서 P(E|s₁), P(E|s₃), P(E|s₄),는 수식 (7)에서와 같이 각각의 해당 심볼들을 제외한 다른 심볼들로의 오율을 합산한 형태로 나타낼 수 있다. 예를 들어 P(E|s₁)의 경우,

$$\begin{split} P(E|s_1) &\leq P(s_2|s_1) + P(s_3|s_1) \dots + P(s_{16}|s_1) \\ &= Q\!\!\left(\frac{d_{1,2}}{\sqrt{2N_0}}\right) \!\! + Q\!\!\left(\frac{d_{1,3}}{\sqrt{2N_0}}\right) \!\! \dots + Q\!\!\left(\frac{d_{1,16}}{\sqrt{2N_0}}\right) \end{split} \tag{10}$$

과 같이 표현된다.

그림 2. Soft-limiter 모델의 AM-AM 전달 특성

그림 3. P(E|s1) 상한값 계산 과정의 개념도

그림 3은 수식 (10)의 계산 과정을 나타내는 개념도 이다. s1에서 s2, s3, ..., s16으로의 심볼 오율을 모두 반영할 경우 15개의 경계를 통해 심볼 오율을 계산 해야 하므로 중첩 영역이 반복하여 발생하며, 중첩 영역의 증가는 실제 오율과의 차이를 증가시키게 된 다. 이와 같은 단점을 완화하기 위해, 그림 4에서 볼 수 있듯이 s1과 인접한 s2, s3, s4, s5, s9의 5개 심볼들 로의 오율만을 union bound에 포함시킴으로써 상한 값의 정확도를 향상시킬 수 있다. P(Els1)의 경우

$$P(E|s_{1}) \leq P(s_{2}|s_{1}) + P(s_{3}|s_{1}) + P(s_{4}|s_{1})$$

$$+ P(s_{5}|s_{1}) + P(s_{9}|s_{1})$$

$$= Q\left(\frac{d_{1,2}}{\sqrt{2N_{0}}}\right) + Q\left(\frac{d_{1,3}}{\sqrt{2N_{0}}}\right) + Q\left(\frac{d_{1,4}}{\sqrt{2N_{0}}}\right)$$

$$+ Q\left(\frac{d_{1,5}}{\sqrt{2N_{0}}}\right) + Q\left(\frac{d_{1,9}}{\sqrt{2N_{0}}}\right)$$

$$(11)$$

로 나타낼 수 있으며, 마찬가지로 *P*(*E*|s₃)와 *P*(*E*|s₄) 는 각각 수식 (12)와 (13)과 같이 표현된다.

$$\begin{split} P(E|s_3) &\leq P(s_1|s_3) + P(s_4|s_3) + P(s_{11}|s_3) \\ &= Q\!\!\left(\frac{d_{3,1}}{\sqrt{2N_0}}\right) \!\! + Q\!\!\left(\frac{d_{3,4}}{\sqrt{2N_0}}\right) \!\! + Q\!\!\left(\frac{d_{3,11}}{\sqrt{2N_0}}\right) \end{split} \tag{12}$$

$$P(E|s_4) \le P(s_1|s_4) + P(s_2|s_4) + P(s_3|s_4)$$

$$= Q\left(\frac{d_{4,1}}{\sqrt{2N_0}}\right) + Q\left(\frac{d_{4,2}}{\sqrt{2N_0}}\right) + Q\left(\frac{d_{4,3}}{\sqrt{2N_0}}\right)$$
(13)

그림 1의 성상도로부터 확인할 수 있는 $d_{1,2}=d_{1,3}=d_{3,1}$, $d_{1,4}=d_{4,1}$, $d_{1,5}=d_{1,9}$, $d_{3,4}=d_{3,11}=d_{4,2}=d_{4,3}$ 의 관계를 이용 하여 식 (11), (12), (13)을 식 (9)에 대입하면 다음 결 과를 얻는다.

$$\begin{split} P(E) &\leq \frac{1}{4} \left(4Q \left(\frac{d_{1,2}}{\sqrt{2N_0}} \right) + 2Q \left(\frac{d_{1,4}}{\sqrt{2N_0}} \right) \\ &+ 2Q \left(\frac{d_{1,5}}{\sqrt{2N_0}} \right) + 6Q \left(\frac{d_{2,4}}{\sqrt{2N_0}} \right) \end{split}$$
(14)

그림 4. 중첩 영역을 감소시킨 P(Elsı) 상한값 계산 과정의 개념도

심볼 s_i 전송 시 s_k로 잘못 판정되는 경우의 오율을 P(s_k\s_i), 이 때 발생하는 BER을 P_b(s_k\s_i)로 표시할 때, 심볼 s_i, s_k 간 상이한 비트 수가 *j*개이면 신호 대 잡 음비가 큰 경우

$$P_b(s_k|s_i) \simeq (j/4)P(s_k|s_i) \tag{15}$$

의 관계를 가지므로, 심볼 오율 상한값을 비트 오율 상한 근사값으로 변환할 수 있다. 그림 1에서 확인할 수 있듯이, 심볼 s1이 s2 또는 s5로 잘못 판정되는 경 우와 심볼 s2가 s4로 잘못 판정되는 경우는 상이한 비트 수가 1개이므로 $P_b(s_k|s_i) \simeq (1/4)P(s_k|s_i)$, 심볼 s1이 s4로 잘못 판정되는 경우는 상이한 비트 수가 2 개이므로 $P_b(s_k|s_i) \simeq (2/4)P(s_k|s_i)$ 로 나타낼 수 있다. 이를 이용한 16APSK BER P_b 는 다음과 같이 나타 내어진다.

$$P_{b} \leq \frac{1}{4} \left(4 \times \frac{1}{4} Q \left(\frac{d_{1,2}}{\sqrt{2N_{0}}} \right) + 2 \times \frac{2}{4} Q \left(\frac{d_{1,4}}{\sqrt{2N_{0}}} \right)$$
(16)
+ 2 \times \frac{1}{4} Q \left(\frac{d_{1,5}}{\sqrt{2N_{0}}} \right) + 6 \times \frac{1}{4} Q \left(\frac{d_{2,4}}{\sqrt{2N_{0}}} \right)

수식 (16)에 포함된 심볼 간 거리 d1.2, d1.4, d1.5, d24는 입력 평균 에너지 ES의 증가에 따른 성상도 왜곡 정도에 따라 3개 구간으로 나누어진다. 입력 전 력의 크기가 충분히 작아 외원 반지름 R2가 선형 구 간의 상한값 √K보다 작은 경우 성상도의 왜곡이 발생하지 않는 반면 (Case I, $\sqrt{K} > R_2$), 전력의 증 가에 따라 외원 상에 위치한 12개 심볼의 신호 크기 가 √ K와 동일한 크기로 왜곡되는 경우가 발생할 수 있다 (Case 2, $R_1 < \sqrt{K} \leq R_2$). 입력 신호 전력 이 더욱 증가되는 경우 내원 및 외원 상에 위치하는 모든 16개 심볼의 신호 크기가 \sqrt{K} 와 동일한 크기 로 왜곡되며, 이는 심각한 오율 증대를 가져오게 된 다 (Case III. $\sqrt{K} \leq R_{\rm i}$). 이때 각 경우의 \sqrt{K} 에 대 한 조건식은 식 (6)을 이용하여 EdNo (잡음 전력 밀 도함수 대비 입력 평균 신호 에너지)에 대한 조건식 으로 변환할 수 있다. 심볼 간 거리는 각 경우에 대 해 다음과 같이 표시된다.

Case I:
$$\sqrt{K} > R_2$$
 $(E_S/N_0 < \alpha(1+3\gamma^2)/4\gamma^2)$

$$\begin{aligned} d_{1,2} &= R_1 \gamma \cos \frac{\pi}{12} - R_1 \cos \frac{\pi}{4}, \ d_{1,4} &= R_1 \gamma - R_1 \\ d_{1,5} &= 2R_1 \cos \frac{\pi}{4}, \ d_{2,4} &= 2\gamma R_1 \sin \frac{\pi}{12} \end{aligned} \tag{17}$$

$$\underline{\text{Case II: } R_1 < \sqrt{K} \leq R_2} \\
 (\alpha(1+3\gamma^2)/4\gamma^2 \leq E_S/N_0 < \alpha(1+3\gamma^2)/4) \\
 d_{1,2} = \\
 \sqrt{\left(\sqrt{K}\cos\frac{\pi}{12} - R_1\cos\frac{\pi}{4}\right)^2 + \left(\sqrt{K}\sin\frac{\pi}{12} - R_1\sin\frac{\pi}{4}\right)^2} \\
 d_{1,4} = \sqrt{K} - R_1, \ d_{1,5} = 2R_1\cos\frac{\pi}{4} \ d_{2,4} = 2\sqrt{K}\sin\frac{\pi}{12} \\
 (18)$$

Case III: $\sqrt{K} \leq R_1 (E_S/N_0 \geq \alpha(1+3\gamma^2)/4)$

$$d_{1,2} = \sqrt{\left(\sqrt{K}\cos\frac{\pi}{12} - \sqrt{K}\cos\frac{\pi}{4}\right)^2 + \left(\sqrt{K}\sin\frac{\pi}{12} - \sqrt{K}\sin\frac{\pi}{4}\right)^2} d_{1,4} = 0, \ d_{1,5} = 2\sqrt{K}\cos\frac{\pi}{4} \qquad d_{2,4} = 2\sqrt{K}\sin\frac{\pi}{12} d_{2,4} = 2\sqrt{K}\sin\frac{$$

<u>그림</u> 5. γ=3.0인 경우 *E_s/N*₀ 증가에 따른 비트 오율 분석 및 검증

수식 (17), (18), (19)를 수식 (16)에 대입하면 비선 형 채널에서의 16APSK BER 상한 근사값을 해당 E_{s}/N_{0} 구간별로 얻을 수 있다. 그림 5는 γ = 3.0과 α = 10, 20, ..., 50에 대한 BER 성능을 도시한 결과이 다. 수식 (16)을 이용한 오율을 'analysis', 시뮬레이 선을 통한 오율을 'simulation'으로 표시하였으며, 오 율이 10² 보다 작은 경우 분석값과 실험값이 매우 근접함을 확인할 수 있다. 또한, 성상도 파라미터 γ 와 비선형 채널 파라미터인 α 에 따라 오율이 최소가 되는 E_{s}/N_{0} 값이 변화함을 관찰할 수 있다.

Ⅳ. APSK 성능 최적화 방안

성상도 왜곡이 없는 Case I의 경우 *Es*의 증가에 따라 심볼 간 거리가 증가되고 BER이 감소하며, 왜 곡이 심한 Case III의 경우 심볼 s₁과 s₄의 중첩을 포함한 심볼 간 거리 감소로 인해 BER 성능이 크게 열화된다. 최소 오율을 보이는 경우는 *Es*의 증가에 따른 심볼 간 거리 증가와, 성상도 왜곡에 의한 거리 감소 현상이 동시에 발생하는 Case II이며, 이 경우 에 대해 수식 (16)의 4개 항을 *Es/N₀*, α 및 γ의 함수 로 표시하면 다음과 같다.

•
$$1\frac{3}{6}$$
:
 $\frac{1}{4}Q\left(\frac{d_{1,2}}{\sqrt{2N_0}}\right) =$
(20)
 $\frac{1}{4}Q\left(\sqrt{\frac{2}{1+3\gamma^2}}\frac{E_S}{N_0} + \frac{\alpha}{2} - 3.46\sqrt{\frac{\alpha}{4+12\gamma^2}}\sqrt{\frac{E_S}{N_0}}\right)$

2항 :

$$\frac{1}{4} Q \left(\frac{d_{1,4}}{\sqrt{2N_0}} \right) = \frac{1}{4} Q \left(\sqrt{\frac{\alpha}{2}} - \sqrt{\frac{2}{1+3\gamma^2}} \sqrt{\frac{E_S}{N_0}} \right)$$
(21)

• 3항 :

$$\frac{1}{8}Q\left(\frac{d_{1,5}}{\sqrt{2N_0}}\right) = \frac{1}{8}Q\left(\frac{2}{\sqrt{2}}\sqrt{\frac{2}{1+3\gamma^2}}\sqrt{\frac{E_S}{N_0}}\right)$$
(22)

• 4항 :

$$\frac{3}{8}Q\left(\frac{d_{2,4}}{\sqrt{2N_0}}\right) = \frac{3}{8}Q\left(0.52\sqrt{\frac{\alpha}{2}}\right)$$
(23)

1항과 2항의 경우 E_s 증가에 따라 단조 증가, 3항 의 경우 단조 감소 특성을 가지며, 4항의 경우 상수 값을 갖는다. Q-function은 지수 함수적인 특성 Q(x) ≃ exp(-x²/2)을 가지고, 성상도 상에서 d_{1,2} > d_{1,4}의 관계를 가지므로, 단조 감소하는 1항과 2항 중 전체 BER 계산 결과에 더 큰 영향을 미치는 것은 2항이 다. 따라서 BER을 최소화하는 E_s/N₀ (이하 (E_s/N₀)_{opt}.로 표기)는 단조 증가하는 2항과 단조 감소 하는 3항의 교차 시 발생하는 E_s/N₀ 값으로 근사할 수 있다. 2항과 3항의 크기가 동일하게 되는 (E_s/N₀)_{opt}.는 Q(x) ≃ exp(-x²/2)의 근사식을 활용하 여 다음 식을 만족함을 보일 수 있다.

$$\frac{2}{1+3\gamma^2} \frac{E_S}{N_0} - 4\sqrt{\frac{\alpha}{4+12\gamma^2}} \sqrt{\frac{E_S}{N_0}} + 2\ln 2 - \frac{\alpha}{2} = 0 \quad (24)$$

위 식을 정리하여 다음을 얻는다.

$$\left(\frac{E_S}{N_0}\right)_{opt.} \simeq \frac{1}{4} \left(3\alpha + 9\alpha\gamma^2 - 4\ln 2 - 12\gamma^2\ln 2 - 2\sqrt{2}\sqrt{\alpha^2 + 6\alpha^2\gamma^2 + 9\alpha^2\gamma^4 - 2\alpha\ln 2 - 12\alpha\gamma^2\ln 2 - 18\alpha\gamma^4\ln 2}\right)$$

$$(25)$$

지수 함수적인 특성을 가지는 Q-function에 곱해지 는 상수 계수의 영향, 즉 2항의 계수 1/4과 4항의 계 수 1/8의 차이를 무시하는 경우 (*Es/No*)opt는

$$\sqrt{\frac{\alpha}{2}} - \sqrt{\frac{2}{1+3\gamma^2}} \sqrt{\frac{E_S}{N_0}}$$

$$-\frac{2}{\sqrt{2}} \sqrt{\frac{2}{1+3\gamma^2}} \sqrt{\frac{E_S}{N_0}} = 0$$

$$(26)$$

의 조건을 만족하며, 이를 정리하면 다음과 같이 간 략화된 결과를 얻는다.

$$\left(\frac{E_S}{N_0}\right)_{opt.} \simeq \frac{\alpha(1+3\gamma^2)}{4(3+2\sqrt{2})} \tag{27}$$

그림 6. 포화 특성 및 성상도 변화에 따른 (Es/No)opt.값의 변화

그림 7. 비트 오율 최소화를 위한 E_s/N₀ 값 비교 (α=40)

그림 8. 비트 오율 최소화를 위한 Es/No 값 비교 (a=60)

그림 6은 수식 (25)와 (27)에서 제시된 (*Es/No*)opt. 값 을 γ 와 α 의 변화에 대해 나타낸 것이며, γ 와 α 가 증가함에 따라 (*Es/No*)opt. 값이 증가함을 확인할 수 있다. 그림 7과 그림 8은 수식 (25)의 (*Es/No*)opt. 값 (그림에서 Box 및 화살표로 표시)을 BER 성능 곡선 에 표시하여 파라미터별 실제 성능 최적점과 잘 일 치됨을 보이고 있다. 수식 (27)의 계산 결과는 수식 (25)의 결과와 비교하여 약 0.4 ~ 0.5 dB의 차이를 보이며, 두 결과값에서의 BER 크기 차이는 미미하 다. 또한 수식 (1)과 (27)로부터 다음 식을 얻는다.

$$\frac{1}{4}(1+3\gamma^2)R_1^2 = \frac{\alpha N_0(1+3\gamma^2)}{4(3+2\sqrt{2})}$$
(28)

식 (5)의 *K*=α*N*₀ 관계식을 식 (28)에 대입하여 정리 하면 다음과 같다.

$$\sqrt{K} = (1 + \sqrt{2})R_1 \approx 2.4R_1$$
 (29)

즉, 입력 전력값 *E*_s의 증가에 따라 외원이 왜곡될 경우, 외원 상에 위치한 심볼의 크기가 *R*₁의 약 2.4 배 지점까지 왜곡되었을 때 오율이 최소가 됨을 의 미한다. 따라서 16APSK 성상도 파라미터 γ는 최소 한 2.4 이상으로 설계하는 것이 바람직하다.

V. 16APSK와 16QAM의 성능 비교

그림 9. 16APSK과 16QAM의 성상도 비교

그림 9(a)는 내원과 외원으로 구성된 16APSK 성 상도를 도시한 것이며, 그림 9(b)는 정방형 형태의 16QAM 성상도를 도시한 것이다. 16APSK의 경우 심볼들이 원형 상에 존재하는 구조적 특성으로 인해 평균 전력 대비 최대 전력의 크기를 16QAM과 비교 하여 감소시킬 수 있으며, 이는 비선형 채널 환경에 서 성능의 이득으로 나타내어질 수 있다. 그림 10은 두 변조 방식의 BER 성능을 실험적으로 평가하여 비교한 결과이다. 16APSK의 경우 γ = 3.0을 사용하 였으며, 각각의 변조 방식에 대해 α = 40, 50, 60으 로 가변하는 비선형 채널을 적용하였다. BER이 최 소가 되는 (*Es/No*)opt. 값은 두 변조 방식이 유사한 크기를 가지나, 최적점에서의 BER 성능은 16APSK 가 더 우수함을 확인할 수 있다. 따라서 그림 10의 성능 평가 결과를 통해, 16APSK 변조 방식이 포화 특성을 가지는 비선형 채널에서 성능 열화 정도를 감소시킬 수 있음을 확인할 수 있다.

그림 10. 16APSK와 16QAM의 비트 오율 성능 비교

Ⅵ. 결론

포화 특성을 가지는 비선형 채널에서 고밀도 변조 방식을 이용하는 신호 전송 시, 입력 전력 크기가 특 정 값 이상으로 증가하면 성상도 왜곡으로 인한 성 능 열화가 발생한다. 본 논문에서는 16APSK 변조 방식 사용 시 비선형성으로 인해 발생하는 성능 열 화를 분석하기 위해 성상도 왜곡 구간 별 심볼 간 거리 변화를 구하여 오율의 상한식을 유도하였으며, 중첩 구간을 감소시킴으로써 그 정확도를 향상시켰 다. 성능 최적화를 위한 *Es/No*의 크기를 성상도 및 채널 특성 파라미터의 함수로 나타내고, 분석 결과를 시뮬레이션 결과와 비교하여 검증하였다. 또한 16APSK와 16QAM의 BER 성능 비교를 통해 비선 형 채널에서의 APSK 변조 방식의 이득을 정량적으 로 제시하였다.

참 고 문 헌

 ETSI EN 302 307 v1.1.1, Digital Video Broadcasting (DVB): Second Generation Framing Structure, Channel Coding and Modulation System for Broadcasting, Interative Service, News Gathering and Other Broadband Satellite Applications, June 2004.

- [2] S. Haykin, Communication Systems, 4th ed. New York, NY: Wiley, 2001.
- [3] R. E. Ziemer and R. L. Peterson, Introduction to Digital Communication, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2001.
- [4] J. Lu and K. B. Letaief, "M-PSK and M-QAM BER computation using signal-space concepts," *IEEE Trans. Commun.*, vol. 47, no. 2, pp. 181-184, Feb. 1999.
- [5] L. Yang and L. Hanzo, "A recursive algorithm for the error probability evaluation of M-ary QAM," *IEEE Commun. Letters*, vol. 4, no. 10, pp. 304-306, Oct. 2000.
- [6] G. Chrisikos, "Analysis of 16-QAM over a nonlinear channel," in *Proc. PIMRC* '98, Boston, MA, Sept. 1998, vol. 3, pp. 1325-1329.
- [7] G. Chriskos and M. Z. Win, "Performance of quadrature amplitude modulation with nonlinear transmit amplifiers in Rayleigh fading," in *Proc. RAWCON* 2000, Denver, CO, Sept. 2000, pp. 51-54.
- [8] 김태환, 성원진, "비선형성 전력증폭기를 사용 한 16-QAM 변조 방식의 성능 분석 및 최적 화," 한국통신학회 논문지, 27권 9호, pp. 847-885, Sept. 2002.
- [9] A. Behravan and T. Eriksson, "Analysis of distortion in a memoryless bandpass nonlinearity," in *Proc. Nordic Radio Symposium*, Oulu, Finland, Aug. 2004.

강 석 헌(Seokheon Kang)

 Kang)
 준회원

 2005년
 2월 : 서강대학교
 전자

 공학과 학사
 2007년
 2월 : 서강대학교
 전자

 공학과 석사
 <</td>

 <관심분야>
 디지털통신, 전송기
 술, 채널코딩

김 상 태(Sangtae Kim)

 im) 준회원
 2006년 8월 : 서강대학교 전자공 학과 학사
 2006년 8월~현재 : 서강대학교 전 자공학과 석사과정
 관심분야> 디지털통신, 고속 모덲

성 원 진(Wonjin Sung)

1990년 2월 : 서울대학교 전자공 학과 학사 1992년 5월 : University of Michigan 전자공학과 석사 1995년 12월 : University of Michigan 전기공학과 박사

종신회원

1996년 1월~2000년 8월 : Hughes

Network Systems사 책임연구원 2000년 9월~현재 : 서강대학교 전자공학과 부교수 <관심분야> 디지털통신, MIMO, 통신 시스템 성능 분석