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ABSTRACT

In this paper, we propose a new rate-control scheme, called splitting, to construct low-rate codes from 

high-rate codes by splitting rows of the parity-check matrices of LDPC codes, which can construct rate- 

compatible LDPC codes having good initial transmission performance. Good low-rate codes can be constructed 

by making the number of distinct check node degrees as small as possible after splitting. The proposed scheme 

achieves good cycle property, low decoding complexity, and fast convergence speed, especially compared to the 

puncturing. Especially, rate-compatible repeat accumulate-type LDPC (RA-Type LDPC) code is constructed using 

splitting, which covers the code rates from 1/3 to 4/5. Through simulation it is shown that this code outperforms 

other rate-compatible RA-Type LDPC codes for all rates and can be decoded conveniently and efficiently.
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Ⅰ. Introduction

Low density parity check (LDPC) codes provide 

better performance than turbo codes yet with 

lower decoding complexity. However, the encoding 

complexity of LDPC codes is quadratic in the 

block length, which results in slow encoding. 

Therefore, efficient encoding algorithm has been 

studied [1] and various fast-encodable LDPC codes 

with dual-diagonal parity structure were proposed 

[2][3], which are called repeat accumulate-type 

(RA-Type) LDPC codes. The main difference 

between RA-Type LDPC codes and general 

LDPCcodes and general irregular LDPC codes is 

the control of degree-2 parity node connectivity. 

The dual-diagonal parity structure allows many 

degree-2 parity nodes while keeping the stability 

and enables the linear-time encoding.

Rate compatible (RC) codes are a family of 

nested codes where the codeword bits of the 

high-rate code are contained in the codeword of 

low-rate code. Therefore, they can be encoded 

and decoded using a single encoder/decoder pair. 

To construct RC LDPC codes, many schemes such 

as data puncturing (shortening) 
[4], puncturing [5][6], 

and extending 
[7][8] have been proposed. These 

schemes have several problems such as slow 

convergence speed, somewhat high decoding 

complexity, and performance degradation. 

In this paper, we propose new rate-control 

scheme called splitting in order to solve the 

above problems. Splitting scheme comes from the 

observation that the quality of the initial 

transmission is an important factor to achieve 

high HARQ throughput. Since the mother code 

for RC-LDPC codes obtained by splitting is the 

highest-rate code in the desired rate coverage, the 

mother code can be designed to achieve good 

initial transmission performance. Also, since a 

high-degree check node is split into two 

low-degree check nodes by adding a new 

common parity node, splitting can generate good 

low-rate codes by making the check node degree 

distribution is in a concentrated form after 
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splitting. Compared with other rate-control schemes 

such as shortening, puncturing, and extending, the 

splitting not only shows faster decoding convergence 

speed but also has low decoding complexity

Ⅱ. New Rate-Control Scheme of 

LDPC Codes: Splitting

To solve the above problems, we propose new 

rate-control method, called splitting, which splits a 

degree- check node into degree-j check node and 

degree- check node,  , by adding a 

new degree-2 parity node. The proposed scheme 

achieves good cycle property, low decoding 

complexity, and fast convergence speed, especially 

compared with puncturing. First, we will explain 

the basic concept of splitting by using the 

following Theorem 1. 

Theorem 1: When a set  

satisfies the even parity, if each of 

   and   

also satisfies the even parity, then     . 

Note that, in this case, the elements of B and C 

satisfy the even parity and it implies that  also 

satisfies the even parity.

Proof: If ⊕⋯⊕⊕⊕⋯⊕  , then we 

have ⊕⋯⊕ ⊕⋯⊕ where ⊕ denotes 

the modulo-2 addition. Under this condition, if 

⊕⋯⊕⊕    and ⊕⋯⊕⊕   , 

then clearly     .

Fig.1 shows an example of splitting where upper 

and lower black circle nodes denote the parity and 

information nodes, respectively, and square nodes denote 

the check nodes. Let   be the set of variable nodes 

connected to the check node . Then, in Fig. 1(a), 

  satisfies the even 

parity where  represents the value of variable node 

. In Fig. 1(b), each of   

and   satisfies the even 

parity and by combining these two sets, it can be 
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(a) Tanner graph (b) Tanner graph obtained by splitting

a b c

Fig. 1 Example of splitting.
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(a) Parity-check matrix of mother code.
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(b) Parity-check matrix after splitting each row. 

Fig. 2 Splitting of general LDPC code.

verified that   also satisfies the even parity. 

Therefore, we can split the check node  in Fig. 

1(a) into two check nodes  and  in Fig. 1(b) by 

partitioning   into two subsets and adding a new 

common degree-2 parity bit 7 to them. In other 

words, a high-degree check node can be split into 

two lower-degree check nodes by adding a common 

degree-2 parity bit to generate low-rate code.

For RC-LDPC codes built using splitting, the 

initial transmission has good performance since 

good mother code of the highest code rate can be 

designed. To construct good low-rate codes using 

splitting, the right degree distribution must be in 

the concentrated form 
[9]. Contrary to the 

extending scheme, splitting does not introduce 

short cycles and can increase the girth.  

Figs 2 and 3 show examples of splitting parity-check
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(b) Parity-check matrix after splitting each row.

Fig. 3 Splitting of RA-Type LDPC code.

matrices of general and RA-Type LDPC codes. 

Note that newly added degree-2 parity bits should 

be connected to the two split rows as explained 

in Theorem 1.

Fig. 2(b) shows the parity-check matrix after 

splitting each row of parity-check matrix of 

mother code in Fig. 2(a). The first row  in Fig. 

2(a) is split into two rows   and   sharing a 

new parity bit in Fig. 2(b) and so on. Fig. 3 is 

for splitting RA-Type LDPC code and can be 

similarly explained as Fig. 2.

The parity-check structure obtained by splitting 

general irregular LDPC codes as in Fig. 2(b) 

may not provide good performance since newly 

generated degree-2 parity bits are partitioned into 

disconnected subsets. In general, connected parity 

(dual-diagonal) structure can guarantee good 

performance. Thus, newly generated degree-2 

parity bits with disconnected subsets may not 

provide good performance. However, the 

parity-check structure in Fig. 3(b) provides good 

performance since newly added parity bits 

maintain the pre-existing dual-diagonal parity 

structure. Therefore, by splitting RA-Type LDPC 

codes, we can construct good low-rate RA-Type 

LDPC codes.

Ⅲ. Comparison of Various Rate 

-Compatible RA-Type LDPC Codes

In this section, we will compare the decoding 

convergence speed and the decoding complexity 

when splitting, puncturing, and extending & 

puncturing are applied to RA-Type LDPC codes. 

Note that extending & puncturing is the scheme 

to obtain high-rate codes by puncturing mother 

code and to obtain low-rate codes by extending 

mother code. Also, by constructing RC RA-Type 

LDPC codes using splitting, puncturing, and 

extending & puncturing, the performances are 

compared for various code rates.

3.1 Decoding convergence speed of 

various rate-control schemes

In this subsection, we compare the decoding 

convergence speed of three rate-control schemes, 

puncturing, splitting, and extending & puncturing. 

The decoding convergence speed of punctured 

LDPC code is slower than that of unpunctured 

LDPC code since the messages are slowly 

updated for the punctured nodes which are 

assigned 0 initial LLR values during the iterative 

decoding. Thus, when the number of iterations is 

not sufficient, punctured LDPC code shows worse 

performance than the unpunctured LDPC code 

even if both have the same threshold. Therefore, 

splitting gives the fastest decoding convergence 

speed and the extending & puncturing is the next 

since splitting does not make punctured nodes and 

extending & puncturing makes smaller number of 

punctured nodes than the puncturing. It can be 

verified through simulation in Fig. 5.

3.2 Decoding complexity of various 

rate-control schemes

We consider the decoding complexity per iteration 

of puncturing, splitting, and extending & puncturing. 

Punctured LDPC codes need more decoding 
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operations per iteration than the unpunctured LDPC 

codes of the same code rate since they are decoded 

on more complicated Tanner graphs which contain 

punctured nodes. Suppose that we use the following 

LLR-BP check node update rule 
[10].

→      ′∈ ╲
 ′→  ′

∙  ′∈╲
 ′→  ′

where →  and →  represent the messages 

from the check node  to the variable node  

and vice versa,  is the set of neighboring 

nodes of the node ,  takes the sign of , 

and     . Also, the following 

LLR-BP variable node update rule 
[10] is used. 

→     
 ′∈ ╲

 ′→  ′

where   denotes the initial LLR value from 

the channel at the variable node . Table 1 

shows the computational complexity for variable 

node and check node message updates (for the 

detailed explanation, see [10]).

The following two approaches are considered to 

calculate the number of additions at the variable 

node message update.

①The addition is done on all incoming LLR 

messages and the initial LLR value at a 

variable node and each incoming message is 

subtracted once to derive the outgoing LLR 

message through that edge. This approach 

requires   additions.

②Each outgoing LLR message is computed by 

using the LLR-BP variable node update rule. 

This approach requires    additions.

Note that these approaches can be applied to 

the additions for check node message update and 

② is more efficient than ① only when   .

Theorem 2: Suppose that we design two RC 

RA-Type LDPC codes using splitting and puncturing 

such that, for the fair comparison, they have × 

Table. 1 Computational complexity of message update at 
each of variable and check nodes during each iteration;   

and  denote the degrees of variable and check nodes, 

respectively.

Node type / 

Operation type
Number of additions

Number of special 

operations  

Variable node      0

Check node   

parity-check matrices of the same degree distribution for 

the lowest code rate . If the code of rate  is 

obtained by splitting the mother code of rate , 

the number of additions per iteration for variable node 

message updates is less than that of punctured code of 

rate   by   if ① is used (or 

  if ② is used). Also, the number 

of additions (or special operations) per iteration for 

check node message updates is also reduced by 

 ( or  ). 

Proof: The RC RA-Type codes for splitting and 

puncturing have the same degree distribution for 

the lowest code rate as shown in Fig. 4(a), 

implying that the numbers of 1’s in information 

parts of parity-check matrices of both codes of 

r a t e   a r e  t h e  s a m e .  T h e  n u m b e r   o f 

punctured parity bits for the punctured code of rate 

  is     in Fig. 4(b) and all 

punctured (or unpunctured) parity nodes have degree 

2. The split code of rate does not contain 

punctured nodes as in Fig. 4(c). Since split and 

punctured codes of rate   have the same number 

of 1’s in information parts of the corresponding 

parity-check matrices, by using splitting the number 

of additions per iteration for variable node message 

updates is reduced by     if 

① is used (or     if ② is 

used) using Table 1. Since the number of total 

edges of check nodes is the same as that of 

variable nodes (except channel values), we can see 

that the total number of edges of check nodes in 

split code is less than that in punctured code by 

   .  Therefore,  by using 

splitting, the number of check node additions (or 

special operations) per iteration is reduced by
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Fig. 4 Schematic parity-check matrices ( ).

           □

  (or  ) using 

Table 1.

3.3 Construction of RC B-LDPC co-

des for various rate-control schemes

In this subsection, the degree distributions of good 

mother block-type LDPC (B-LDPC) codes 
[3], a class 

of RA-Type LDPC codes, are obtained for splitting, 

puncturing, and extending & puncturing, and the 

target range of code rates is from 1/3 to 4/5. We 

design mother codes for RC B-LDPC codes using 

splitting and puncturing such that they have the 

same degree distribution for the lowest-rate codes 

for the fair comparison. The code parameters for 

extending & puncturing are determined such that, 

for the lowest code rate, the maximum variable 

node degree is limited by 16 which is also the 

maximum variable node degree for the splitting and 

puncturing, and the decoding complexity becomes 

similar to those for splitting and puncturing. 

3.3.1 Code parameters for splitting: 

The rate-4/5 mother code for splitting has the 

following degree distributions. The parameters 

and  denote the variable node and check node 

degree distributions, respectively.

  
≥ 





      , 

  
≥ 





     

where   and   denote the fractions of edges 

incident to the variable and check nodes with 

degree , respectively.

3.3.2 Code parameters for puncturing: 

The rate-1/3 mother code for puncturing has 

the following degree distributions [11]. 

   

   

This code has better asymptotic performance 

than Turbo code proposed in 3GPP [11]. Also, the 

optimal puncturing patterns proposed in 
[5] are 

used to construct RC B-LDPC codes. 

3.3.3 Code parameters for extending & 

puncturing:

The rate-1/2 mother code for extending & 

puncturing has the following degree distributions [3].

   

   
,

To obtain higher-rate codes from the mother 

code, we use the puncturing scheme in [5] and to 

obtain lower-rate codes from the mother code, we 

adopt the extending scheme proposed in 
[8]. We 

derive the following degree distributions for the 

rate-1/3 code by extending.

   

 

    

By using the mother B-LDPC codes with degree 

distributions in (i), (ii), and (iii), we will compare the
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Table. 2 Overall decoding complexittes for variable and 
check node additions and special operations for each code rate.

Rate-Control 

Scheme

Code 

Rate

Number of Variable 

(or Check) Node 

Update Additions

Number of 

Special 

Operations



Puncturing
1/3,1/2, 

2/3,4/5
438240 (417120) 438240

Splitting

1/3 438240 (417120) 438240

1/2 353760 (343200) 353760

2/3 311520 (306240) 311520

4/5 290400 (287760) 290400

Extending & 

Puncturing

1/3 457600 (436480) 457600

1/2, 

2/3,4/5
267520 (256960) 267520

decoding complexities of splitting, puncturing, and 

extending & puncturing using Theorem 2. By using the 

parameters defined in the subsection III-B, we can get 

        

where  and  are the row and column numbers 

of model matrix of B-LDPC code and × is the 

size of a circulant as defined in [3]. Suppose that 

   and the number of iterations is 20. For 

splitting and puncturing, we use    and 

  . Compared with the punctured B-LDPC 

codes, the overall numbers of additions for variable 

node message updates using approach ① for split 

B-LDPC codes are reduced by 84480, 126720, and 

147840 for the code rates 1/2, 2/3, and 4/5, 

respectively. Also, for the check node message 

updates, the same number of special operations is 

reduced. The overall numbers of additions for 

check node message updates are reduced by 73920, 

110880, and 129360 for the code rate 1/2, 2/3, 

and 4/5, respectively. For extending & puncturing, 

we consider the mother B-LDPC code of rate 1/2 

with    and   . Then, the extended 

B-LDPC code of rate 1/3 should have    and 

  . Suppose that    to have the same code 

length for the puncturing and splitting cases and 

the number of iterations is 20. For the code rate 

1/2, the overall number of additions for variable 

node message updates using approach ① for 

B-LDPC code obtained by extending & puncturing 

is reduced by 170720 and 86240, compared with 

the puncturing and splitting, respectively, since its 

parity-check matrix is sparser than those for 

splitting and puncturing. Also, for the check node 

message updates, the same number of special 

operations is reduced. The overall numbers of 

additions for check node message updates are 

reduced by 160160 and 86240 compared with the 

puncturing and splitting, respectively. For other 

code rates, we can easily compare the complexities 

of these rate-control schemes. Table 2 shows the 

overall computational decoding complexity for 

variable and check node additions and special 

operations for each code rate.

Punctured codes can be encoded and decoded 

using a single encoder/decoder pair, i.e., the 

system needs only mother parity-check matrix. For 

extending & puncturing, a single encoder/decoder 

pair is needed for punctured codes and different 

encoder/decoder pair is necessary for each extended 

code. For splitting, different encoder/decoder pair 

is needed for each code, i.e., all parity-check 

matrices for each code rate should be saved. 

However, this additional complexity may be 

negligible since the overall decoding complexity 

of splitting is much lower than that of puncturing.

3.4 Simulation results

For the simulation, BPSK modulation, AWGN 

channel, 1056 information bits (for splitting and 

puncturing, we use   ,   , and   , 

and for extending & puncturing, we consider the 

mother B-LDPC code of rate 1/2 with   , 

  , and   . Then, the extended B-LDPC 

code of rate 1/3 should have   ,   , and 

  .), and belief propagation algorithm are used. 

Since splitting does not introduce punctured nodes 

in Tanner graph, it gives faster convergence speed 

than puncturing. When the number of iterations is 

20, Fig. 5(a) shows that, at rates between 1/2 and 

4/5, RC B-LDPC codes using splitting have about 

0.1dB-0.25dB and 0.5dB-1.2dB gains at FER=10-2 

over RC B-LDPC codes using extending & 

puncturing and only puncturing. Fig. 5(b) shows 

that as the number of iterations increases, the 

performance gap becomes smaller, and to show 
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(a) The number of iterations is 20.

(b) The number of iterations is 50.

Fig. 5 Performance comparison of various codes.
(Solid line with squares: RC B-LDPC code using splitting; 
dash-dot line with stars: RC B-LDPC code using extending 
& puncturing; dotted line with circles: RC B-LDPC code 
using only puncturing dashed line with triangle: Turbo 
code.)

the good rate-compatibility and good performance 

of proposed B-LDPC code, it is compared with 

Turbo code adopted in 3GPP 
[12]. Fig. 6 compares 

the throughputs of type-II HARQ schemes using 

three RC B-LDPC codes for code rates 1/3, 1/2, 

2/3, and 4/5. We assume that noiseless feedback 

link is available so that the receiver can reliably 

inform the transmitter of the decoding result and 

round trip delay is ignored. Throughput , the 

measure of the performance of HARQ, is defined 

in 
[7]. Fig. 6 shows that the type-II HARQ using 

RC B-LDPC code obtained by splitting has the 

best throughput. Therefore, from simulation, we 

can also verify that RC B-LDPC code obtained 

by splitting has good performance and fast 

convergence speed.
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Fig. 6 Throughput comparison of type-II HARQ schemes 
using various RC B-LDPC codes. (The number of iterations 
is 20.)

Ⅳ. Conclusions

In this paper, we propose a new rate-control 

scheme called splitting. It is shown that splitting 

not only shows faster decoding convergence 

speed than other rate-control schemes such as 

puncturing and extending but also has low 

decoding complexity. By using splitting, we 

explicitly construct RC B-LDPC code achieving 

code rates 1/3, 1/2, 2/3, and 4/5, which is 

compared with RC B-LDPC codes using 

puncturing only and extending & puncturing. By 

simulation, we verify that RC B-LDPC code using 

splitting gives better performance and higher 

throughput of type-II HARQ than other RC 

B-LDPC codes, especially when the number of 

iterations is limited. Therefore, RC RA-Type LDPC 

codes using splitting can be a good candidate for 

the next-generation communication system which 

requires high system throughput.
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