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ABSTRACT

Cognitive Radio is an advanced enabling technology for efficient utilization of under-utilized spectrum since it 

is able to sense the temporally available spectrum and adapt its parameters to fully utilize the frequency band. 

Recent investigation suggests that spectrum sensing is compromised when a cognitive radio user suffers from the 

environment with fading or shadowing. In order to combat the effect, collaborative sensing is considered to be a 

promising way, which combines the sensing result of each user to achieve good performance. However, the 

conventional collaborative sensing is not efficient when users suffer different fading environments. In this paper, 

we propose a weighted-collaborative scheme that considers using the weights of each collaborative CR user, 

which can achieve better sensing performance under both fast and slow fading environments. The analysis of the 

simulation resultsproves that the weighted-collaborative scheme improves sensing performance obviously and 

outperforms the conventional method.
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Ⅰ. INTRODUCTION

Recently, the traditional approaches for spectrum 

management have been reconsidered to the actual 

use of spectrum. The FCC’s (Federal 

Communications Commission) Spectrum Policy Task 

Force has reported plentiful temporal and geographic 

variations in the usage of allocated spectrum 
[1]. 

The FCC frequency chart (see Figure 1) indicates 

the multiple allocations over all of the frequency 

bands, where there is a drastic competition for use 

of spectra, especially in the frequency below 3 

GHz. One way of increasing spectrum utilization 

called Opportunistic Spectrum Sharing is to reuse 

the spectrum when their hosts (Primary users) are 

absent. With this concept, secondary users are 

allowed to access the frequency bands without 

agreement from the primary users. 

Cognitive Radio (CR) is considered as a potential 

solution to improve spectrum utilization via 

opportunistic spectrum sharing. It is an intelligent 

wireless communication system that is aware of its 

surrounding environment and uses the method of 

understanding-by-building to learn from the 

environment and adapt its internal states to 

statistical variations in the incoming RF stimulate 

by making corresponding changes of its parameters 

in time 
[2]. The fundamental requirement is to keep 

non-interfering co-existence to the primary users.

There are three fundamental tasks for Cognitive 

Radio: spectrum sensing, dynamic spectrum 

allocation and transmit-power control
 [2].
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Fig. 1 FCC frequency chart
 

Among them, spectrum sensing has been 

identified as the key technique to ensure that 

cognitive radios would not interfere to primary 

users, by reliably detecting primary user signals 

with the help of some novel algorithms such as 

enhanced energy detection
[3], cyclostationary feature 

detection[4,5]. In order to confront fading 

environment, collaborative sensing among secondary 

users has recently be proposed in 
[6,7,8], where they 

investigate the collaborative spectrum sensing 

techniques to overcome multipath fading and 

shadowing, which have attracted a lot of attentions 

from the research community. With cooperation 

between some numbers of CR users, the 

collaborative sensing method may improve sensing 

performance significantly compared to the individual 

sensing. 

However, most of the collaborative methods in 

recent study assume that all the collaborative 

participants experience independent and identically 

distributed (i.i.d.) fading with the same average 

SNR. Furthermore, the performance of proposed 

methods under different average SNR is not 

discussed yet. In this paper, we quantify the 

performance of collaborative sensing in fading 

environments with the same average SNR, as well 

as the collaborative users with different average 

SNR. Moreover, we propose a weighted - 

collaborative scheme to make a more accurate 

sensing decision than conventional one.

The remainder of this paper is organized as 

follows: Section II reviews the local spectrum 

sensing, while conventional collaborative sensing is 

outlined in section III. The weighted -collaborative 

sensing scheme is introduced in section IV. Some 

simulation results are analyzed in section V. Finally, 

we conclude this paper in section VI.  
 

Ⅱ. LOCAL SPECTRUM SENSING

Generally, local spectrum sensing is carried out 

by using classic energy detection as shown in fig. 

2. It can be easily implemented by squaring the 

received signal and integrating over the time 

interval, and then comparing the output of energy 

detector with the threshold that depends on the 

noise floor. If the estimated energy of the received 

signal is larger than the preset threshold, the 

existence of primary user would be declared. 

Because of low computational complexity, energy 

detector has been considered as the most common 

way for individual spectrum sensing in secondary 

users.

Noise 

Pre-Filter ( )
2

?
Input x(t) y(t)

Squaring Device Integrator

Vt

adjudge

Pd

Fig. 2 Block diagram of the classic energy detection 

The classical energy detection is under the test 

of the following two hypotheses:


                    (1)


             (2)

where y(t) is the signal received by secondary 

user, x(t) is the transmitted signal by primary user 

and n(t) indicates the additive white Gaussian noise, 

h(t) is the amplitude gain of the channel. Under H0, 

the received signal y(t) is noise alone while  under 

H1, y(t) consists of PU signal and noise. 

In order to evaluate the performance of sensing 

schemes, we generallytest the statistics to achieve 

two kinds of probabilities, probability of detection 

and false alarm, which can be defined as:




 
               (3)


 

 
               (4)

where  is the preset threshold level.
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Ⅲ. Collaborative Sensing in 

Cognitive Radio

In order to improve the reliability of spectrum 

sensing, collaborative sensing is proposed in [7] that 

different secondary users are allowed to collaborate 

by sharing their sensing information under the 

assumption that all the users suffer the i.i.d. fading 

with the same average SNR. 

Here, we first quantify and analyze the 

performance of the conventional collaborative 

sensing scheme, which apply the OR-rule as the 

collaborative decision criterion 
[9]. Then, according 

to this criterion, the probabilities of detection and 

false-alarm for the collaborative scheme denoted by 

Qd and Qfa can be written as follows:




                (5)




                (6)

where N denotes the number of the collaborative 

users, Pd and Pfa are the individual probabilities of 

detection and false-alarm.

Fig.3 shows the ROC (receiver operating 

characteristics) for different numbers of collaborative 

users under AWGN, the average SNR of each user 

is 5dB. As the number of collaborative user 

increases, the sensing performance of the 

collaborative scheme is much better than the 

individual sensing. For example, when  is equal 

to 0.1, the   of individual sensing is less than 

0.65, while the collaborative sensing with 10 users 

can achieve as large as 0.9.

In conventional collaborative scheme, all the 

users are assumed to experience the i.i.d. fading 

with the same average SNR. However, in practical, 

the collaborative users are likely to suffer different 

fading due to their variable environments. 

Consequently, the average SNR must be different 

from user to user. In order to evaluate the 

performance under this case, we assume that each 

collaborative user has different average SNR 

denoted by  , which is randomly selected from 

1dB to 5dB. Fig.4 and Fig.5 show the performance 

of conventional collaborative method in which each 

user experiences the different environments under 

AWGN and Rayleigh fading respectively, where the 

N=1 case denotes the best local sensing result. The 

related parameters are defined in table 1.
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Fig. 3 ROC curves of collaborative sensing under 
AWGN 
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Fig. 4 ROC curves of collaborative sensing vs. best 
local sensing under AWGN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pf Probabilty of false alarm

P
d
 P

ro
b
a
b
ilt

y
 o

f 
d
e
te

c
ti
o
n

N=1 

N=3

Fig. 5 ROC curves of collaborative sensing vs. best 
local sensing under Rayleigh fading
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Parameter Value

Modulation Type BPSK

Average SNR 1~5dB

 Bandwidth 1000Hz

Maximum Doppler freq 160Hz

Table 1.The related parameters in simulation

As shown in the figure, in the AWGN 

environment, the collaborative decision is inferior 

to the local decision all along. For the case under 

Rayleigh fading environment, the collaborative 

user with bad channel condition may degrade the 

performance of the total collaborative sensing, 

which leads to worse collaborative result than the 

individual one under good condition. Therefore, 

the conventional collaborative sensing is not 

always useful but only increases the complexity.

Ⅳ. The Weighted-Collaborative 

Sensing Method

In conventional collaborative sensing method, it 

is inefficient to arrange the same role for each 

collaborative user when they suffered different 

fading environments. The collaborative users 

should be given different roles to indicate their 

contributions to the final decision. In this paper, 

we propose a weighted-collaborative sensing 

scheme that assigns the dynamic weight factors to 

different collaborative users based on their 

contributions to enhance the performance of the 

collaborative sensing effectively.

We suppose two kinds of environments. One is 

the slow fading environment under which 

collaborative users are stationary or move slowly 

and the result of each sensing process is assumed 

to be constant or changed a little; the other is the 

fast fading environment under which collaborative 

users’ locations change greatly during a short 

period and the sensing results change greatly for 

each sensing process. When the change of users’ 

detection probability is within a pre-defined  level 

compared to the previous sensing process we 

consider they are under slow fading environment, 

otherwise they are considered under the fast 

fading environment. In this paper we set this 

level to 5%. Accordingly, the way to update 

weight factors is different based on the kind of 

the environment. In the proposed sensing scheme, 

each collaborative user is active and operates 

availably during the whole process.

Noise Pre-Filter

Squaring

Integrator

x(t)

y(t)

Threshold

Pd

Calculate weight 

for this sensing

Weighted-

collaborative 

decision 

Q dw

Fast fading

Analyze 

environment

Sensing results 

generation 

Calculate weight 

for this sensing

Slow fading
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weights from 

last sensing

Weighted-
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decision 

Sensing results 

generation 

Q dw

Weight Factor 

Update

Fig. 6 The weighted-collaborative sensing scheme

Due to the different locations and 

environments, the average SNR for each user is 

different. The decision process will be divided 

into two steps: weight factor update and sensing 

results generation. Fig.6 shows the block diagram 

of the proposed weighted-collaborative scheme.

We do not give the weight factor to probability 

of false alarm, because it is considered for the 

case of no signal transmission and independent of 

SNR, it can not be affected by the channel 

environment.
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4.1 Weight Factor Update 

The weight factor is defined as Wi(n), where i 

denotes the ith user, n denotes the nth sensing. 

Assign a weight factor Wi(n), to the ith user, 

after each sensing process, each user updates its 

weight factor, according to (7) and (10).

4.1.1 Slow Fading Environment

As analyzed above, under the slow fading 

environment, each sensing process of collaborative 

users can be assumed to be stationary. Therefore, 

we can update the weight for each collaborative 

user based on their contribution in the last 

sensing, which can be derived as follows:


 

 


      (7)

where








  




 

       (8)

 
 is the detection probability of the ith 

user in the nth sensing. Initially, we assign the 

same weight factor 
   to each user. After 

the n sensing, the weight factor for each user is 

updated and would be used in the decision of the 

(n+1)th sensing. Therefore, we can dynamically 

change the weight of each collaborative user 

based on their last contribution, while satisfying 


  




 for every sensing.

4.1.2 Fast Fading Environment

Different from the slow fading environment, it 

is improper to get weight factor from the 

previous sensing result under fast fading 

environment. In this case, we decide the weight 

factor for each user only by the current sensing 

result, as follows:


  


                  (9)

 






  



 
           (10)

We directly calculate the weight factor of each 

user based on the current sensing decision. If the 

user demonstrates more contribution in the final 

decision result of the current sensing, then it 

would be assigned largerweight value. In this 

case,
  




 is also satisfied in every sensing.

As a result, the weight factor of the user who 

has more contribution to the final decision will be 

increased gradually. In other words, if a user 

experiences deep fading with lower SNR, its 

weight factor will be decreased to reduce its 

contribution to the final collaborative decision.

4.2. Sensing Results Generation 

Based on the calculated weight value for each 

collaborative user from the above analysis, in this 

step, each collaborative user carries the assigned 

weight factors to contribute to the final decision. 

Therefore, the whole probabilities of detection for 

the weighted-collaborative scheme denoted by   

can be expressed as:




  




 

              (11)

With contrast to equation (5), (11) considers 

the dynamically controlled weight factor for each 

   to evaluate each contribution to the final 

decision, which is studied to enhance the sensing 

performance and achieve better performance.

Ⅴ. Simulation Results

In order to analyze the performance of the 

proposed scheme, we are interested in illustrating 

the ROC curves for different conditions of 

interest. The referred collaborative method is the 

conventional scheme in our simulation. All our 

simulations are based on the energy detection. We 

focus on the impact of the user number N, as 

well as the number of sensing process n to 

evaluate the performance of the proposed scheme. 

Furthermore, we consider the set of users under 

different fading environments, a part of them are 

with good channel conditions and others are with 

bad channel conditions. 
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Fig. 7 ROC curves of collaborative sensing vs. 
weighted-collaborative sensing under AWGN with slow 
fading environment
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Fig. 8 ROC curves of collaborative sensing vs. 
weighted-collaborative sensing under Rayleigh fading 
with slow fading environment
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Fig. 9 ROC curves of collaborative sensing vs. 
weighted-collaborative sensing under Rayleigh fading 
with slow fading environment
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Fig. 10 ROC curves of collaborative sensing vs. 
weighted-collaborative sensing under AWGN with fast 
fading environment
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Fig. 11 ROC curves of collaborative sensing vs. 
weighted-collaborative sensing under Rayleigh fading 
with fast fading environment

The simulation results from Fig.7 to Fig.9 are 

based on the slow fading environment. As shown in 

Fig.7, when the collaborative users have different 

average SNRs, after the second sensing, our proposed 

method achieves a significant improvement.

As n increases gradually, the performance 

becomes better. The potential unfairness in the 

conventional method is ameliorated by varying 

weight factors of collaborative users depend on their 

contributions. Especially, the improvement with low 

Pfa is notable. In Rayleigh fading environment as 

illustrated in Fig.8, even with low Pfa we can obtain 

very high Pd. For example, when Pfa = 0.2, the Pd 

increase to 0.61 with n=2, and as large as 0.78 for 

n=3. Moreover, Fig.9 shows how N impacts the 
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performance of the proposed weighted-collaborative 

scheme under Rayleigh fading. As expected, the better 

performance of weighted sensing is achieved when 

different users have different average SNRs. With 

increasing N, the performance of the 

weighted-collaborative scheme will be better. When the 

number of collaborative user increases to 5, the Pd 

approaches to 0.75 with Pfa =0.2 and n=2, the 

collaborative sensing scheme shows robustness under 

the fading environment. The simulation results in 

Fig.10 and Fig.11 are based on the fast fading 

environment. When the collaborative users have 

different average SNR, even under fast fading 

environment, the performance of proposed weighted 

method is much better than the conventional 

collaborative one. Furthermore, Fig.11 shows the 

impacts of collaborative user number N. With the 

increasing of N, the weighted-collaborative method can 

achieve better performance. The proposed 

weighted-collaborative sensing well overcomes the 

impact of fading environment by giving different roles 

to different users based on their contributions to the 

final decision.

Ⅵ. CONCLUSIONS

In this paper, we propose a 

weighted-collaborative sensing scheme that can 

enhance the performance of spectrum sensing 

when different users suffer different channel 

environments. We address the problem of 

traditional collaborative structure and improve it 

with the proposed method. Our analysis and 

simulation results show that the proposed 

spectrum sensing scheme can achieve better 

performance under different fading environments. 

Further work will be continued to evaluate the 

more related parameters includes optimum 

individual threshold, the spatial distribution of 

users and other more important propagation 

characteristics
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