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ABSTRACT

The effect of the variable packet size on the LRD characteristic of the MMPP traffic model is 

investigated. When we generate packet traffic for the performance evaluation of IP packet network, MMPP 

model can be used to generate packet interarrival time. And a random length of packet size from a certain 

distribution can be assigned to each packet. However, there is a possibility that the variable packet size might 

change the LRD characteristic of the original MMPP model. In this study, we investigate this possibility. For 

this purpose the ‘refined traffic’ is defined, where packet arrival time is generated according to the MMPP 

model and a random packet length from a specific distribution is assigned to each generated packet. Hurst 

parameter of the refined traffic is estimated and compared with the original Hurst parameter, which is the 

input parameter of the MMPP model. We also investigate the effect of the packet size distribution  on the 

queueing performance of the MMPP traffic model and  the relationship between the Hurst parameter and 

queueing performance.
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Ⅰ. Introduction

Traffic characterization and modeling is a 

crucial activity towards an efficient dimensioning 

and resource management of IP networks. A 

general consensus exists in the fact that Internet 

traffic is not Poisson at any level of 

aggregation. Recent traffic studies have shown 

that Internet traffic may exhibit properties of 

self-similarity and long range dependence. These 

characteristics have significant impact on network 

performance.

Over the last few years a number of attempts 

were made to develop models for LRD(Long 

Range Dependence) data traffic, which include 

multifractal model
[17], FBM(Fractional Brownian 

Motion)[11], chatoc map[13], wavelet decomposition[12], 

and FRIMA(Fractional ARIMA)
[14], etc. Unfortunately, 

none of the above models that present LRD, 

self-similarity, and scale invariance allow an 

analytical solution when they are used as traffic 

generators feeding queueing systems, even the 

simplest single server queues. Even their use in 

simulations is often troublesome 
[21]. Therefore, 

there has been a strong demand for a model that 

matches the LRD characteristic of the measured 

traffic and yet are analytically tractable and 

relatively easy to understand.

MMPP(Markov Modulated Poisson Process) 

model proposed by Anderson
[5] appears to be a 

promising solution for above mentioned problems. 

The parameters of MMPP are determined so as 

to match the autocorrelation function.  It 

emulates LRD over a certain range of time 

scales with finite Markovian models. It was 

shown that the long-term correlation of traffic 

beyond a  certain threshold does not influence 

the performance of a system
[15],[16]. So, MMPP 
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model where correlation is limited can be 

successfully employed. The use of MMPP also 

benefits from the existence of several tools for 

calculating the queueing behavior.  Anderson’s 

MMPP model is used as a traffic model for IEEE 

802.16 BWA (Broadband Wireless Access) system
[1]. 

Depending on the matched statistics of the traffic 

data  (such as autocorrelation, variance, and 

probability distribution), several MMPP models 

were proposed 
[6],[7],[20],[21].

Dan et al.[22] show that the burstiness of the 

IP packet traffic can be influenced by the 

burstiness of the packet arrival process and also 

by the packet size distribution. Salvador et al.
[23] 

also argue that accurate modeling of IP traffic 

requires matching closely not only the packet 

arrival process but also the packet size 

distribution. However, MMPP models  try to 

match the LRD characteristic with only the packet 

arrival process and do not characterize the packet 

size distribution.

When we generate packet traffic for the 

performance evaluation of IP packet network, 

MMPP model can be used to generate packet 

interarrival time. And a random length of packet 

size from a certain distribution can be assigned 

to each packet. However, there is a possibility 

that the variable packet size might change the 

LRD characteristic of the original MMPP model. 

In this study, we investigate this possibility. For 

this purpose the ‘refined traffic’ is defined, where 

packet arrival time is generated according to the 

MMPP model and a random packet length from 

a specific distribution is assigned to each 

generated packet. Hurst parameter of the refined 

traffic is estimated and compared with the 

original Hurst parameter, which is the input 

parameter of the MMPP model. We also 

investigate the effect of the packet size 

distribution on the queueing performance of the 

MMPP traffic model and  the relationship 

between the Hurst parameter and queueing 

performance.

Following the introduction, we discuss the 

LRD of the Internet traffic and the effect of the 

LRD on network performance in section 2. The 

MMPP traffic model is also briefly explained. In 

section 3, the MMPP traffic model is constructed, 

which can be used to generate packet for this 

study. And the refined traffic is generated 

considering packet size distribution. Time series 

data are defined to estimate Hurst parameter for 

the refined traffic. In section 4, Hurst parameter 

estimation method is briefly discussed and 

estimation results are given. Queueing 

performances of the MMPP traffic model are also 

discussed. Final conclusion and future works are 

mentioned in section 5.

Ⅱ. Background

2.1 Self-Similarity and Long-Range 

Dependence

Long-range dependence has been found in 

various kinds of network traffic, such as in local 

and wide area networks 
[4],[8],[9],[10]. In order to 

model such kind of traffic, self-similar processes 

are introduced instead of traditional Poisson-based 

models.

The self-similarity and LRD definitions are 

given as follows. Let X= (X t :t=0, 1, 2, . . .)  

be a covariance stationary stochastic process with 

mean μ  , variance σ 2  , and autocorrelation 

function r(k),k≥0 . Assume r(k)  is of the form

r(k)∼ k
- β
, as k →∞         (1)

where 0 <β < 1 .

For each m= 1, 2, 3, . . . ,  let 

X (m )= (X (m )
t : t=1, 2, 3, . . .)  denote the new 

covariance stationary time series obtained by 

averaging the original series X  over 

non-overlapping blocks of size m , i.e.,

X
(m )
t =(X tm-m+ 1+ ⋯+X tm)/m, t≥1   (2)

The process X  is called (exactly) second-order 

self-similar if for all               

and
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r
(m )
(k) ∼ r(k), k≥0          (3)

The process X  is called (asymptotically) 

second-order self-similar if for k  large enough, 

r
(m )
(k) → r(k), as m→∞     (4)

The key property of this class of self-similar 

process is that the covariance does not change 

under block aggregation and time scal changes. 

The Hurst parameter is defined as H = 1- β/2 . 

Note that here 0.5 < H <1, since 0 < β  < 1. A 

self-similar process with 0.5 < H < 1 is long 

range dependent. Processes with LRD are 

characterized by an autocorrelation function that 

decays hyperbolically (as compared to the 

exponential decay exhibited by traditional traffic 

models). Hyperbolic decay is much slower than 

exponential decay, and since β  < 1, the sum of 

the autocorrelation values of such series 

approaches infinity. The Hurst parameter is thus a 

key indicator of LRD behavior. The higher the 

value of H is, the stronger the long range 

dependence.

There are several studies, which show the 

effect of LRD on queueing and network 

performance
[2],[3]. They showed that the packet 

loss and queueing delay behavior in simulation 

using real traffic data were very different from 

those  of traditional network models.

2.2 MMPP Traffic Model 

MMPP  is a doubly stochastic Poisson process. 

Consider L MMPP’s.  In the case of m -state 

MMPP  ( i= 1, 2, . . . , L )  its arrival rate is 

determined by the state of a continuous-time 

Markov chain with infinitesimal generator Q i
 and 

Poisson arrival rates λ
ij ( j= 1, 2, . . . , m ) . That 

is, arrival rate is λ
ij
 when the Markov chain of 

the i th MMPP is in state j.  Matrix Λ
i
 which 

describes Poisson arrival rates is called the arrival 

rate matrix. In the two-state case, called  SPP 

(Switched Poisson Process), Q i
 and Λ

i
 are 

given by

 
    

    

,  
  

  

Superposition of MMPPs with two-state (SPP) 

is suggested as a very versatile tool for the 

modeling of variable packet traffic with LRD
[5]. 

The volume of traffic modeled by each of the 

individual two-state sources  can be associated 

with the volume of the traffic showing variability 

on a given particular time scale. This should be 

reflected in the choice of time constants for each 

individual SPP, i.e., the choice of modulating 

parameters C i 1
 and C i 2

 . For example, 

consider a model consisting of a three SPP’s. If 

we assume λ
i 2= 0 , this model can be 

considered as a superposition of 3 IPP’s 

(Interrupted Poisson Process).

  1) First IPP:

     λ
1= (λ 11) = 6.0, C 11=C 12= 10

- 2  

  2) Second IPP:

     λ
2= (λ 21) = 6.0, C 21=C 22= 10

- 4   

  3) Third IPP:

     λ
3= (λ 31) = 6.0, C 31=C 32= 10

- 6   

In Fig. 1, autocorrelation functions of three 

IPP’s are shown as a function of time scale.  

From this, we can see that only IPP 3 contributes 

significantly to the correlation for k=10 6  , while 

Fig. 1. Autocorrelation Functions of IPP's
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Table 1. Required Input Parameters

Parameter Meaning

λ  Packet arrival rate of process

d  Number of IPP's

ρ  Lag 1 correlation

k  Time scale

  H  Hurst parameter

both IPP 2 and IPP 3 contribute significantly to 

the correlation for k=10
4 , and finally for 

k=10
2  all three IPP’s contribute significantly to 

the correlation.

Depending on the statistics (such as 

autocorrelation and variance) of the traffic data 

matched using the MMPP model there can be 

several methods to construct the MMPP traffic 

model
[6],[7],[20],[21]. The required input parameters are 

shown in Table 1.

Ⅲ. Generation of  the Refined 

Traffic and Time Series

3.1 Construction of the MMPP Model

In this study Anderson’s model is used to 

generate MMPP traffic, where traffic is modeled 

Table 2. MMPP Models

Input param-

eters
source λ IPP

i c 1 i c 2 i

d  = 4

k  = 105

λ  = 3.0

H = 0.60

ρ  = 0.50

IPP
1 8.253 5.714*10

-1
2.286*10

-1

IPP
2 1.799 1.231*10-2 4.924*10-3

IPP
3 0.381 2.652*10-4 1.061*10-4

IPP
4 0.088 5.714*10

-6
2.286*10

-6

d  = 4

k  = 10
5

λ= 3.0

H = 0.75

ρ  = 0.50

IPP
1 6.579 5.715*10

-1
2.285*10

-1

IPP
2 2.562 1.231*10

-2
4.923*10

-3

IPP
3 0.914 2.653*10

-4
1.061*10

-4

IPP
4 0.448 5.715*10

-6
2.285*10

-6

d  = 4

k  = 10
5

λ  = 3.0

H = 0.85

ρ  = 0.50

IPP
1 4.748 5.715*10-1 2.285*10-1

IPP
2 3.383 1.231*10

-2
4.923*10

-3

IPP
3 0.983 2.653*10

-4
1.061*10

-4

IPP
4 1.837 5.715*10-6 2.285*10-6

by the superposition of several IPP’s. The 

parameters of IPP’s are determined so as to match 

the autocorrelation function. For this study, packet 

arrival rate, number of IPP’s, time scale, and lag 1 

correlation are assumed as 3/unit time, 4, 10, and 

0.5, respectively. For the Hurst parameter we use 

three different values: 0.6, 0.75, and 0.85. Following 

the flow diagram in Anderson's work
[5], three 

MMPP models are constructed as shown in Table 2.

To generate packet traffic from above MMPP 

models, ARENA simulation is used.

3.2 Packet Size Distribution and Refined 

Traffic Generation

The burstiness of the IP packet traffic can be 

influenced by the burstiness of the packet arrival 

process and also by the packet size distribution
[22]. 

Therefore, accurate modeling of IP traffic requires 

matching closely not only the packet arrival process 

but also the packet size distribution. The MMPP 

models, which only address the packet arrival 

process, can not characterize the packet size 

distribution.

In this study we want to see the effect of 

packet size distribution on LRD characteristic of 

the MMPP traffic. For this purpose the MMPP 

traffic model is refined, where packet arrival time 

is generated according to the MMPP traffic model 

and a random packet size from a certain distribution 

is assigned to each packet. Following three 

distributions are assumed. For convenience’sake, 

mean packet length is assumed as 1.

   - constant

   - exponential

   - pareto ( α  =2, β  =0.5)

 

Now the refined traffic is generated using the 

MMPP model of Table 2 and one of  the packet

 

Fig. 2. Refined Packet Traffic
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size distributions mentioned above. To investigate 

the effect of variable packet size on LRD 

characteristic of the MMPP models, following two 

Hurst parameters are compared.

1. Hurst parameter H, which is used as a input 

parameter for MMPP model

2. Estimated Hurst parameter H
* of the refined 

traffic.

3.3 Time Series Generation

The refined traffic trace is characterized by two 

variables: packet arrival time and packet length. 

From this trace, time series with only one 

variable must be generated in order to estimate 

Hurst parameter for this variable. 

During Δt time period we have random number 

of packet arrivals. Within non-overlapping time 

intervals of size Δt we sum the size for the packets 

arriving in each interval Δt i , and obtain the time 

series {Traffic X  } = { X i , i= 1, 2, 3, . . . }. 

Following Fig. 2 shows the refined traffic 

obtained from the MMPP model by assigning 

random packet length. The arrival times are 

marked as X and the values in parenthesis 

represent the packet sizes.

From the above Figure 2 time series are 

determined as X 1= 2.9= (0.7+ 1+ 1.2),

X 2= 0.3, X 3= 1.3= (0.8+ 0.5), ⋯ .

Ⅳ. Hurst Parameter Estimation

To obtain the time series from the refined 

traffic we used three different values of Δt : 

0.15, 0.3, and 0.6. Assuming that mean packet 

arrival rate is 3, the mean numbers of packet 

arrival during this interval are 0.45, 0.9, and 1.8, 

respectively.

4.1 Hurst Parameter Estimation

In this study the aggregated variance method
[19] 

is used to estimate Hurst parameter H*. Time 

series data are divided in blocks of length m  

and compute the sample average and variance. 

Fig. 3. Log( m ) versus Log(Sample Variance)

And we construct the graph of Log( m ) versus 

Log(sample variance). From the slope of this 

graph Hurst parameter is estimated. For 

sufficiently large values of m  the slope estimates 

2H-2. The graph slope can be obtained using the 

least square method. 

Following Figure 3 shows the graph of Log

( m ) versus Log(sample variance) for the  

exemplary refined traffic. To generate the refined 

traffic, the MMPP model of H = 0.75 (Table 2) 

and exponential packet size distribution with mean 

1 are assumed.  Δt = 0.3 is used to generate 

time series.

Using the least square method the graph slope 

is determined as -0.49, and the Hurst parameter is 

estimated as 0.755.

Table 3. Hurst Parameter Estimation (H*)

 Hurst 
parameter 

of the 
MMPP 
model

Time
interval

Constant Exponential Pareto

 H=0.6
0.15
0.3
0.6

0.603
0.620
0.619

0.613
0.618
0.613

0.610
0.615
0.620

 H=0.75
0.15
0.3
0.6

0.750
0.750
0.753

0.758
0.755
0.753

0.753
0.758
0.756

 H=0.85
0.15
0.3
0.6

0.851
0.852
0.853

0.855
0.850
0.854

0.856
0.851
0.855

From above Table 3, we can find following 

facts:
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- The estimated Hurst parameter value of the 

MMPP traffic is almost same as the Hurst 

parameter value H, which is the input parameter 

of the MMPP model. This fact shows that 

MMPP faithfully matches the LRD characteristic 

of the measured traffic.

- The estimated Hurst parameter values, H
*, 

remain almost same irrespective of the packet 

size distributions and time interval Δt, which 

shows that the LRD characteristic of the MMPP 

traffic model is not affected by the packet size 

distributions.

4.3 Queueing Performance

In this section, the effect of the packet size 

distribution  on the queueing performance of the 

MMPP traffic model is investigated. Also, the 

relationship between the Hurst parameter and 

queueing performance is addressed. For this 

purpose we consider the single-server model, 

infinite queue size, and FIFO discipline. The 

MMPP models of Table 2 are used as the offered 

traffic. The server loads are assumed as 0.4, 0.5, 

and 0.6. Following Table 4 summarize the 

simulation results.

Table 4. Simulation Results of the Queueing Performane 
( * denotes server load )

 Hurst
parameter

of the 
MMPP 
model

Packet size 
Distribution

 Waiting time in 
 queue

 Number of packet 
 in queue

0.4

*

0.5

*

0.6

*

0.4

*

0.5

*

0.6

*

 H=0.6
Constant

Exponential
Pareto

0.590
0.718
0.917

1.393
1.567
1.903

3.014
3.292
3.634

1.775
2.158
2.759

4.188
4.713
5.720

9.084
9.924
10.954

 H=0.75
Constant

Exponential
Pareto

0.417
0.551
0.725

1.226
1.466
1.914

4.602
5.044
5.932

1.257
1.663
2.186

3.631
4.342
5.667

13.955
15.296
17.990

 H=0.85
Constant

Exponential
Pareto

0.598
0.804
1.112

5.265
5.663
6.719

52.225
53.161
54.320

1.887
2.539
3.509

16.898
18.178
21.565

176.38
179.54
183.46

From above Table 4 we can find following 

facts:

- The queueing performances of the MMPP model 

are influenced by the packet size distribution. 

- It is anticipated that the traffic with higher Hurst 

parameter shows more LRD traffic burstiness, and 

thus leads to much larger queue size. This is true 

for the relatively high server load, 0.6. However, 

the MMPP traffic model of H = 0.6 gives slightly 

larger queue size and waiting time than the MMPP 

traffic model of H =0.75 when the server load is 

0.4 or 0.5. This shows that the Hurst parameter is 

not by itself an accurate predictor of the queueing 

performance for a given LRD traffic trace. (This 

result is also observed by Gerla[18])

Ⅴ. Conclusion and Future Works

The MMPP traffic model is refined by 

assigning a random packet size to each generated 

MMPP packet. To estimate Hurst parameter time 

series are constructed by summing the sizes for 

the packets arriving during time interval Δt.

It is shown that Hurst parameter of the refined 

traffic is almost same as that of the original 

MMPP traffic. That is, the LRD characteristic of 

the MMPP traffic remains same under the 

variable packet size following a certain 

distribution.

It is also shown that the queueing performances 

of the MMPP traffic model are influenced by the 

packet size distributions. We show a case, where  

the queue size and delay of the traffic with low 

Hurst parameter are larger than those of the 

traffic with relatively high Hurst parameter and 

conclude that the Hurst parameter is not by itself 

an accurate predictor of the queueing performance 

for a given LRD traffic trace. In this study we 

have seen that the Hurst parameters of the traffic 

traces with different packet size distributions are 

same. However, that does not mean their 

queueing performances are same.  Further study is 

required to analytically show the relationships 

between the Hurst parameter and queueing 

performance.
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