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ABSTRACT

One of the criteria for designing good LD-STBC is maximizing the mutual information between the transmit

and receive signals. In this paper, we propose a construction method of 2Fx2" LD-STBC by selecting the

dispersion matrices among the representations of the non-abelian group G, , of order

k+2
m,r 2 .
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I. Introduction

Space-time coding is the scheme that provides
both diversity gain and coding gain by
Otransmitting signals over Rayleigh fading channels

using multiple antennas'' .

In [7], Alamouti in-
troduced a simple code to provide full diversity for
two transmit antennas. The scheme has been gener-
alized by Tarokh, et al. [8] using the theory of or-
thogonal designs. But these codes generally show
poor performance at high rates or with many
antennas.

To maximize the multiple-antenna channel ca-
pacity, LD-STBCs(Linear-Dispersion Space-Time
Block Codes) are proposed as a high-rate coding
scheme for any number of transmit and receive an-
tennas by Hassibi, et al™P' The transmitted code-
word of LD codes is a matrix in which all trans-
mitted symbols are dispersed by the dispersion ma-
trices(or weight matrices). The LD codes can be
used for any number of transmit and receive anten-
nas and are very simple to encode. Furthermore the
LD codes can be decoded in a variety of ways in-
cluding simple linear-algebraic techniques such as
successive nulling and canceling and sphere decoding.

And the codes satisfy an information-theoretic opti-
mality criterion[1]. In other word, the codes are de-
signed to maximize the mutual information between
the transmit and receive signals. In [1] and [2], de-
signing capacity-maximizing LD STBC were resorted
to computer search. In [10], a code design scheme
using Dihedral group representation is proposed. In
[3], such codes are constructed using division
algebra. In this paper, we propose a construction by
restricting the dispersion matrices to those which
form a non-abelian class of groups under matrix
multiplication [6]. Our scheme includes the codes
proposed by [10] as a special case when the num-
ber of transmit antenna is 2.

The paper is organized as follows. In Section II,
the system model are described and LD codes are
reviewed. The group representations are discussed
in Section III. In Section IV, we propose a code de-
sign and the computer simulation result and con-

clusion are drawn in Section V.

. System Model with Linear
Dispersion Code

In this Section, we briefly review the MIMO
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system considered in this paper along with a de-
scription of the channel. Then we review the linear
dispersion code description of linear space time co-
des[1].

2.1 Signal Model

Consider a MIMO System with M transmit an-
tennas and N receive antennas in a flat fading
channel. Let s&C* denote the vector of complex
transmitted signals and == C?" denote the vector of
complex received signals during any given channel
use (i.e, frame length). The transmitted and re-

ceived signals are related by

r= j%Hs-‘rv 1)

where p is the signal to noise ratio at each re-
ceive antenna, H=C"** is the channel matrix and
vECY is the additive noise. Entries in the channel
matrix A and additive noise v are assumed to be
independent and identically distributed Gaussian

random variables with zero mean and unit variance.

2.2 Linear Dispersion Codes

Assume that s, , s, are complex symbols with
unit average energy over T symbol intervals, typi-
cally chosen from r-PSK or r-QAM constellation.
Linear Dispersion signal matrix § is defined as [1]

[®
S= f]lanq +j8,B, 2)

=
where s, =a,+j3,, ¢=1,--,Q and the MxT
complex matrices 4, and B, are called the dis-

persion matrices or weight matrices. The rate R of
Qlog,

T

In this paper, we are considering a subclass of
LD codes in which 4, =B, for ¢=1,-,Q. Such
LD-STBCs have been considered in [2] and [10]
also.

this code is R=

Over successive 7 channel uses, (1) can be writ-

ten in matrix equation form as
x= L us+v 3)
M

150

L aYs
- ﬂ{qufjl,quq+V @)

where § is an M T space time codeword, V is
an NxT complex additive Gaussian noise matrix
and X< CY"*7 is the received signal matrix.

We can write (4) in an equivalent vector

notation.

vee(X)= \/%H@[sl Sy SQ]TJrfue(:( V) (&)

where vec(X) is the N7x1 matrix obtained by
stacking all columns of X, H=diag(H, H,-- H) is
an NTXMT block
D= [U@C(Al) vec(AZ)

matrix.

diagonal matrix, and
vec(AQ)] is an MTXQ

2.3 Design Criterion

Hassibi and Hochwald [1] suggested that the
guideline for designing good STBC should be rath-
er maximizing the mutual information between the
transmit and receive signals than the well-known
rank-determinant criteria which stem from the pair-
wise error probability point of view sre1

In [10], the maximum mutual information be-
tween the transmitted signal vector [s, s, ,sQ]T

and the received vector vec(X) is given by

1
ch(p7 M, N) = ?EHIng

dct(INT + %]HQ@THT ))
(6)

It is also shown in [10] that

Crpelps My N) < Clp, M. N),

where  Clp, M, N)= Eglog,

det|Iy+ 2L HH || s
s

the capacity of the channel depicted in Fig.1.

Transmit

Receive
Antenna Antenna
Array Array

Fig. 1 A flat fading channel with multiple antennas
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Definition([10]): If C;pc(p,M;N) = Cp,M; N) then
the space-time block code is said to be in-
formation-lossless.

When Q=M1, if 0 =1, then
Cypop MiN) = Cp,M;N) holds. Moreover, when
Q=MT this
tr(4,A41) =
[10].

In this paper, we are utilizing group representa-

condition is  equivalent to

6,;» where o, =1 if i=j and 0 otherwise

tions to construct the weight matrices satisfying
o =1,,, .

Il. Representations of Non-
Abelian Group, G, ,
Designing LD codes is in fact the design of
weight matrices. Here we propose a design scheme
to construct weight matrices using non- abelian
group G, .

The group G, , is defined as follows :

m,r

G, =Corle" =111 =0, wr'=0"),

where n is the order of » modulo m and t=
m/ged(r—1,m). The group G, .,

When m is odd and ged(n,t) =1,

a fixed-point free group, i.e., the group whose rep-

has order mn.

G, becomes

resentations do not have eigenvalue 1. The rank cri-
terion tells us that if the unitary representations of
a group are used as STBC codewords, then the
group must be fixed-point -free for the full diver-
sity gain. The fixed-point -free group G, , is well
studied in [6]. In this paper, we utilize the group
G, , for the design of weight matrices, and we are

.
considering the case when m=2" only. In this case,
the group is no more fixed-point-free.

Let p be an irreducible representation of the nor-
mal subgroup H=<o) and the irreducible repre-

sentation G, . on H be denoted by A. Then the

m,r

representations of o and 7 are derived in [6] as

A)=| § A7 ™)

and
0 10--0
0 01--0
AD=| i ®)
0 00--1
pl@) 000

Note that p is an irreducible representation of
the cyclic subgroup H, and p(c) =w where w is a

primitive m-th root of unity.

IV. Code Design

As mentioned in section II, when @=> MT,
Csrpep MiN) = Clp,MN) if ®3' =1,,,. But the
smaller @ is more beneficial in terms of coding
gain. Thus, we set @= MT. Since the representation

of group G, , is an n>n matrix (see (7) and (8)),
we have M=T=n and we need @=n’> weight
matrices.

Lemma 1:

Let G . ={orlo"=1,7=0,70r '=0"). If

we set m=2" and r=8a+3, where k(>3) and «
are arbitrary integers, then the order n of r modulo
m is 2872,

Proof ) 1t is easy to see that

2k 2

r “71:(r2":‘+1)(r- +1)-- ©)
¢+ + 1) 1)

Since r? = 1(mod8), =1 (mod4). Thus

r* 4+1=2(mod4) for i=1. From (9), we have
1= A2 1) =42

where both 4 and A are odd. Thus, > =
1(mod2*). Now, assume that X\ is the smallest pos-
itive integer such that " =1 (mod 2*). Then X\
should divide 2°72, ie, A=2" and i< k—2.
But
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where B is an odd integer. Thus, 2|(Bx2*?),
which implies that k¥ <i+2. Therefore i=k—2, i.e.,
2% is the order of r modulo 2. o
From lemma 1, when we set m=2" and r is
any integer congruent to 3 modulo 8, the order of

G

. is four times n>. What we are going to do is
to select n’ elements out of 4n’ group elements of

G,

m,r

matrices of our LD-STBC as in the following

and use their representations as the weight

Theorem.
Theorem 2:
Let G  =f{o7lc"=1,% =0, or ' =0") with

m,r
m=2" and r=3(mod 8).
Set

{ali=1, 2 1}=

m

1

1 . . jt
- L 4
Lo AGo), - At ) |
2 2
ogigz’“*ﬂ,og]’ng*Ll} (10)
Then the matrix
& = [vec(A4, )vec(4,) - vec(Aﬂ.d)] (11)
: of P
satisfies @@' =T,
"y . ey
T w Wi W wi 4 Y 0 0 0 0
00 0 0 o to o 0 0 0
00 0 0 f fooo 0
)
00 0 0 f E
.......................... L
00 0 0 ( i
11y . e H
W w[% r w(-_"l'r ceowh 4 br v 0 0 - i}
0o o 0 [ Vo0 . 0
00 0 0 ( P00 - 0
__________________________ I_
"
]
00 0 0 0 io o 0 0 0
L]
00 w 0 0 e 0 io 0w 0 0 w0
L]
' =1 pi_p -1 an re-1 A n il
00 « 0 0 e 0 S| qu_ ..-vfs"y n!'4’! niaa
S I = | R
L1 o N N L [ S R 0 - 0

Fig. 2 Matrix &
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;
' ) ] R
o 0 0 o WA R L G
: ; .
|
i "1 LIy
MR S i S b e o 0 o 0
:
!
) o 0 oo ) 0 0 0
.............................. b e
0 0 0 o 0 0 0 0
:
0 0 0 o D 0 0 0
:
i Tl g {10
) o 0 o NENL. SN L N L
' .
\
PP
4 - D'i o o o 0

Wl

Proof ) It is enough to show that every row of
¢ is orthogonal to every other row of &.

Using (10) and (11), we can make the matrix &
(Fig. 2). As shown in Fig. 2, each row contains on-
ly 2°7%(=n) non-zero entries.

We are going to show that the first (¢,) and the
last row (c,.) are orthogonal. It is not difficult to
show in a similar fashion that the inner product of
any two rows in @ is also zero.

Two rows ¢ and c,. can be written as follows.

ﬂ71 m
1 y
o = (wo w e w® w?
w w -0)
0 n-1 (78l 1)t
C )2 = (11) w w s w
%7‘”—1 (%Jr l)ruﬂ (7177 %, 1)7.r—1
w w 0--0)

The inner product of ¢ and c. is given by

m)

/8= N g™
61622: mizi]()l{(wl,rr 1)? +(w17r 1)(1+ 1

} (12)

Since «' " =w" V" and ged(r,m)= 1, the or-

n—
—r

1 r—
der of w' is same as that of «/ ~'. The order of

W' is t=m/ged(r—1,m), and in the case of

;
:
:
i
]
:
: L
0 0 0 e 0 1 w8 W wa 4
; ' ;
w1l mp sl el -l
ST 8T ' 0 0 o 0
L]
:
) ) 1] 0 ' [ . [\] [T 1]
:
i
o o 1] 0 : (LS 0 oo 1]
!
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m=2" and r=3(mod8), t=m/2=2""!. Thus

(w' =" )"/* = —1, which makes (12) be zero. O

V. Simulation Results and
Conclusions

In this section, we show the performance of LD
code proposed in this paper by the simulation on
the exemplary LD codes with A/=4 and rate 4
constructed from Gi; ;.

Example :
Gy =1\H,TH, 7H, 7 H}

where H=<o), and ¢'®=7'=1. From (7) and
(8), the representations A(c) and A(r) are given

as follows.
0w® 0 0 0010
AL =lg 00| 20=00 0 1
00 0 w?“ w0 0 0

where w=exp(j27/16). The 16 weight matrices
from (10) can be represented as

Ali=1,---,16} =
{ i

{\/EA(W), \/EA(WH) [7=0,1,2,3 7::0,1}

and A;’s are

1000 01 0 0][00 10 0001
0100 001010001}1&000
0010 00 0 1||w*0 0 0 0 w0 0
0001 w® 0 0 0][0 w0 O 00 w0
w0 0 0 0 w20 0 0 0w'o 00 0 w?
0w?0 0 0 0w 0[]0 00w? |w?00 0
00 w'o0 0 0 0w? |w?00 0 0w 0 0
0 0 0 w? w?0 0 0 0 w0 0 0 0w?o0
w0 0 0 0w 0 0 0 0w 0 00 0w
0Ow>0 0 00w 0 00 0w |w 0 0 0
00w 0 00 0w |0 0 0|[|0wr0 0
000w [w”0 0 0 0 w'0 0 0 0 w' 0
w”0 0 0 0 w®0 0 0 0w"o0 0 0 0w’
0w?®0 0 0 0 who0 00 0wl |w?0 00
0 01[;130 0 0 0 w' wlSO 00 0u,r70 0
00 0w] [w®0 00 0w 0 0 0 0w 0

The performance obtained from a simulation
with qu{il}iS shown is Fig 3.

Bit error probability
5

S 1 1 it I N | Ny W Y W 1)

SNR(dB)

Fig. 3 Bit error rate for M=4, N=2, 4bit/sec/ Hz
STBCs proposed LD code and bit error rate for STBCs
in [13]

Fig 3. is the performance comparison between
our proposed code and the code in [13]. We can
find that the proposed codes have 3dB advantages
at a BER of 10"

In this paper we have proposed the linear dis-
persion codes using non-abelian group
representations. The proposed codes can be applied
to the system with any 2% transmit antennas. To
see whether our proposed code meets the rank-de-

terminant criterion and the generalization for the

case of m = 2" are remained as further works.
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