
논문 08-33-03-03 한국통신학회논문지 '08-03 Vol. 33 No. 3

240

Implementation of a 16-Bit Fixed-Point MPEG-2/4 AAC Decoder

for Mobile Audio Applications

Byoung Eul Kim* Associate Member, Sun-Young Hwang* Regular Member

ABSTRACT

An MPEG-2/4 AAC decoder on 16-bit fixed-point processor is presented in this paper. To meet audio quality

criteria, despite small word length, special design methods for 16-bit fixed-point AAC decoder were devised.

This paper presents particular algorithms for 16-bit AAC decoding. We have implemented an efficient AAC

decoder using the proposed algorithms. Audio contents can be replayed in the decoder without quality

degradation.

Key Words : AAC, Audio coding, MPEG audio, 16-bit fixed-point, IMDCT

※ This research was supported by the MIC (Ministry of Information and Communication), Korea, under the ITRC (Information

Technology Research Center) supported program supervised by the IITA (Institute for Information Technology Advancement)

(IITA-2008-(C1090-0801-0012))

 * The authors are with Department of Electronic Engineering, Sogang University, Seoul, Korea.

 논문번호：KICS2007-12-583, 수일자：2007년 12월 22일, 최종논문 수일자：2008년 3월 13일

Ⅰ. 서 론

During last two decades, digital audio has been

widely accepted as a common medium for listen-

ing to the music because digital audio has un-

precedented high fidelity and wide dynamic range.

In particular, the market of mobile digital audio

without mechanical parts has been growing rapidly

since commercial success of MPEG-1/2 Layer

III(MP3) standards. One of the reasons of the

success of mobile digital audio products is the

development of audio compression technology,

which makes it possible to provide high quality

audio at low bit rate such as compact disc.

MPEG-2/4 AAC(Advanced Audio Coding) is one

of the most advanced technologies among existing

audio coding technologies in terms of compression

rate and audio quality, and this is why AAC is

broadly accepted in digital audio market
[1].

Digital Signal Processor(or "DSP processor").

The DSP processors can be classified into

fixed-point DSP processor and floating-point DSP

processor. While a floating-point DSP processor

has advantages of precision and range over

fixed-point DSP processor, it tends to be more

expensive and more power consuming than

fixed-point DSP processor. Hence mobile devices

are mostly designed on fixed-point DSP processor.

Most commercialized DSP processors have 16-bit,

24-bit, or 32-bit word length. A DSP processor

with a shorter word length usually has a lower

arithmetic accuracy with less cost.

It has been reported that AAC decoder can

fully meet audio quality criteria by employing the

word length longer than 20 bits
[2]. While AAC

decoder on 16-bit fixed-point DSP processor such

as TI’s TMS320C54x is a cost-effective solution,

due to limited dynamic range and scaling down

of data, it is difficult to meet audio quality cri-

teria when implementing the AAC decoder with

16-bit processors
[3]. Most mobile audio devices

support 16-bit resolution audio outputs. A critical

limitation of 16-bit fixed-point AAC decoding is

to get 16-bit audio resolution on 16-bit

processing. It is difficult to obtain 16-bit audio

accuracy on 16-bit processing since additional bits

www.dbpia.co.kr

논문 / Implementation of a 16-Bit Fixed-Point MPEG-2/4 AAC Decoder for Mobile Audio Applications

241

Fig. 1 MPEG-4 AAC decoder block diagram
[5]

are needed to avoid overflows and to maintain

data accuracy[4]. However it is possible to get sat-

isfactory audio quality on 16-bit AAC decoder us-

ing particular decoding process for minimum ac-

curacy loss. In this paper, we propose the algo-

rithms for 16-bit fixed-point AAC decoding. We

implemented an efficient 16-bit fixed-point AAC

decoder using the proposed algorithms. The de-

coder can replay audio contents without quality

degradation.

This paper is organized as follows. Section II

and III describe the optimal number of guard bits

of AAC spectral coefficients for 16-bit spectral

processing and a novel fixed-point scaling algo-

rithm of IMDCT, respectively. Section IV presents

a performance test of the 16-bit fixed-point AAC

decoder implemented using the proposed

algorithms. Finally, results of implementation of

the 16-bit fixed-point AAC decoder are discussed

in section V.

Ⅱ. Optimal Number of Guard Bits

for Spectral Processing

The MPEG-2/4 standard[5] defines several tools

for different audio coding algorithms to establish

optimal coding efficiency for a broad range of

applications. Figure 1 shows an overview of the

MPEG-4 AAC decoding process
[5]. In Figure 1,

quantized spectral data is noiselessly decoded

from de-multiplexed AAC bitstream. Each co-

efficient is inversely quantized and re-scaled. Then

spectral coefficients are completely recovered from

spectral data by spectral processing which is

marked in figure 1, before they are fed into

IMDCT. IMDCT transforms spectral coefficients

into time-domain samples. Finally, transformed

time-domain samples are windowed, overlapped,

and added for proper reconstruction. By this se-

quence, AAC bitstream is decoded into PCM

samples.

In pre-spectral processing, spectral coefficients

have to be inversely quantized and re-scaled after

noiseless decoding. Pre-spectral processing needs

dynamic range from [0..9×10
16] on AAC specifica-

tions[4]. However, this range cannot be covered by

16-bit processing. Thus, spectral coefficients should

be limited to 16-bits by additional downscaling

process. Extra gain factor Ge is defined for 16-bit

limitation of spectral coefficients as in (1)[6].

⎥
⎦

⎥
⎢
⎣

⎢
= specspec

1' x
G

x
e (1)

To prevent overflow during the 16-bit spectral

processing, spectral coefficients limited by Ge

have to be included proper guard bits into the

left of the most significant bits. We select opti-

mal number of guard bits of AAC spectral co-

efficients for 16-bit spectral processing on the re-

maining of this chapter. Assuming that the max-

imum absolute value of input spectral coefficients

into spectral processing is xin and the maximum

absolute value of output spectral coefficients from

spectral processing is xout, bit growth of spectral

coefficients can be obtained by (2).

⎡ ⎤ ⎡ ⎤in2out2spec loglogBitGrowth xx −= (2)

Table 1 shows experimental results of fre-

quency distribution of bit growth during the spec-

www.dbpia.co.kr

한국통신학회논문지 '08-03 Vol. 33 No. 3

242

AAC
Files

Total
number of
frames in
AAC file

Number of frames(Percentage)

0-bit growth 1-bit growth
Over
1-bit

growth

1 6,909,301 4,435,771 (64.2%) 2,473,530 (35.8%) 0

2 25,953 19,065 (73.5%) 6,888 (26.5%) 0

3 292,002 159,654 (54.7%) 132,348 (45.3%) 0

4 245,385 142,803 (58.2%) 102,582 (41.8%) 0

5 191,142 105,288 (55.1%) 85,854 (44.9%) 0

6 1,242,300 900,606 (72.5%) 341,694 (27.5%) 0

7 1,027,419 593,352 (57.8%) 434,067 (42.2%) 0

8 385,482 203,811 (52.9%) 181,671 (47.1%) 0

9 542,184 293,109 (54.1%) 249,075 (45.9%) 0

10 1,014,012 680,190 (67.1%) 333,822 (32.9%) 0

11 224,967 128,904 (57.3%) 96,063 (42.7%) 0

12 92,619 52,152 (56.3%) 40,467 (43.7%) 0

13 61,008 33,210 (54.4%) 27,798 (45.6%) 0

14 92,127 50,184 (54.5%) 41,943 (45.5%) 0

15 2,879,799 1,980,054 (68.8%) 899,745 (31.2%) 0

16 465,678 272,814 (58.6%) 192,864 (41.4%) 0

17 411,435 222,876 (54.2%) 188,559 (45.8%) 0

18 2,656,308 1,939,710 (73.0%) 716,598 (27.0%) 0

19 1,039,965 699,255 (67.2%) 340,710 (32.8%) 0

20 7,569,174 4,753,950 (62.8%) 2,815,224 (37.2%) 0

Table 1. Frequency distribution of bit growth during the
spectral processing(1 frame = 1024 spectral coefficients)

tral processing using 20 different AAC audio

files. We obtained values of bit growth using

(2). From table 1, 0-bit growth accounts for

52.9% ~ 73.4%, and 1-bit growth accounts for

26.5% ~ 47.1%. Over 1-bit growth has not been

observed. Results of table 1 reveal that over 1-bit

growth of spectral coefficients never occurs during

the spectral processing. According to this result,

two guard bits, which are included one margin

bit, should be inserted into spectral coefficients

during scaling process by Ge, in order to prevent

overflow prior to IMDCT process. The proposed

extra gain equation for selecting Ge including two

guard bits is given as in (3), where xmax is the

maximum absolute value of input spectral

coefficients. By (3), spectral coefficients can be

completely recovered during the spectral process-

ing without overflow.

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

∈
∈
∈
∈
∈
∈
∈
∈
∈

=

)2 ,2[,2
)2 ,2[,2
)2 ,2[,2
)2 ,2[,2
)2 ,2[,2
)2 ,2[,2
)2 ,2[,2
)2 ,2[,2
]2 ,2[,2

140
max

0

1514
max

1

1615
max

2

1716
max

3

1817
max

4

1918
max

5

2019
max

6

2120
max

7

3221
max

8

x
x
x
x
x
x
x
x
x

Ge

(3)

Ⅲ. Scaling Algorithm of IMDCT for

16-Bit Fixed-Point AAC Decoding

Spectral coefficients scaled by (3) and (1) are

decoded into 16-bit PCM data by spectral process-

ing and filter bank processing. Most errors are

caused by IMDCT in this process, so it is im-

portant to implement IMDCT with a high precision.

The IMDCT equation is shown by (4)
[7][8].

∑
−

=
⎥⎦
⎤

⎢⎣
⎡ ++=

1)2/(

0
0)

2
1)((2cos][2][

N

k
ii knn

N
kX

N
nx π

 (4)

In (4), n is sample index(0 ≤ n < N), i is window

index, k is spectral coefficient index, N is number

of total samples which is 2048 or 256 according to

the window type, and n0 is (N / 2 + 1) / 2,

respectively. IMDCT algorithm based on FFT is the

most suitable for implementation on DSP process-

ors
[3]. Since N-point IMDCT can be expressed in

terms of an IFFT computation of length N / 4, per-

forming the IMDCT with N = 2,048 or N = 256 is

similar to performing the FFT with N = 512 or N

= 64
[9]. Figure 3 shows a flow of IMDCT calcu-

lation based on FFT
[9].

www.dbpia.co.kr

논문 / Implementation of a 16-Bit Fixed-Point MPEG-2/4 AAC Decoder for Mobile Audio Applications

243

X[k]
↓

Pre-twiddle Multiplication

↓

Inverse FFT

↓

Post-twiddle Multiplications

↓

Reordering

↓

x[n]

Fig. 2 Flow of IMDCT calculation based on FFT
[9]

Fig. 3 Proposed signal flow structure of radix-8 butterfly. This structure includes three scaling stages to prevent addition

overflows at each sub-stage

Radix-8 FFT algorithm is the most suitable

choice to implement fast IMDCT for AAC de-

coders using 16-bit fixed-point DSP processors
[3].

In case of radix-8 IFFT, the calculation given in

(5) is performed at each stage. In (5), X[k] is in-

put samples, X’[k] is output samples, and WN
nk is

twiddle factor(WN = e(-j2π/N)), respectively.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

+

+

+

+

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−
−

−−
−

−

−−−−

+−
−

+
−

−−−

−−−−

−−−
−

+
−

+−

−−−−

−
−

−−
−

+−+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

+

+

+

+

−

−

−

−

−

−

−

n
N

n
N

n
N

n
N

n
N

n
N

n
N

WNkX

WNkX

WNkX

WNkX

WNkX

WNkX

WNkX

kX

jjjjjj

jjjj

jjjjjj

jjjjjj

jjjj

jjjjjj

NkX

NkX

NkX

NkX

NkX

NkX

NkX

kX

7

6

5

4

3

2

)
8

7(

)
8

6(

)
8

5(

)
8

4(

)
8

3(

)
8

2(

)
8

(

)(

2
1

2
11

2
1

2
11

1111
2

1
2

11
2

1
2

11

11111111
2

1
2

11
2

1
2

11

1111
2

1
2

11
2

1
2

11

11111111

)
8

7('

)
8

6('

)
8

5('

)
8

4('

)
8

3('

)
8

2('

)
8

('

)('

(5)

To prevent addition overflow of fixed-point

IFFT, proper guard bits are required. According to

(6), eight add operations are performed per each

sample on radix-8 IFFT and maximum magnitude

growth factor is 10.899: input samples of each

IFFT stage need four guard bits. However, four

guard bits decrease precision of IFFT significantly

since the number of effective bits is changed

from 16 to 12. In this paper, we propose a novel

scaling algorithm with minimum guard bits for

fixed-point radix-8 IFFT. Figure 3 shows signal

flow of radix-8 butterfly using the proposed scal-

ing algorithm. Suggested flow includes three scal-

ing stages to prevent addition overflows at each

sub-stage. Scaling operation is performed at the

end of each sub-stage. The proposed scaling algo-

rithm is derived from radix-2/4/8 algorithm
[10].

Cascade decomposition of radix-8 butterfly in [10]

is originally derived for efficient VLSI implement.

However, we prove that cascade decomposition of

radix-8 butterfly can be used for efficient scaling

of radix-8 IFFT calculation with minimum guard

bits. Table 2 shows maximum number of add

operations, maximum growth factor, and required

guard bits at each sub-stage of the proposed IFFT

butterfly(figure 5). In table 2, input samples of

sub-stage 1 need one guard bit since one add op-

eration is performed per each sample. Then, input

samples of sub-stage 2 and sub-stage 3 need two

www.dbpia.co.kr

한국통신학회논문지 '08-03 Vol. 33 No. 3

244

Fig. 4 Propose overall process of IMDCT calculation

with minimum guard bits for 16-bit fixed-point AAC

decoding.

Max. Number of
Add Operations

Max. Growth
Factor

Required
Guard Bits

Sub -
stage 1 1 2 1 bit

Sub -
stage 2

2 2.828 2 bits

Sub -
stage 3

2 2.828 2 bits

Table 2. Maximum number of guard bits at each sub-
stage using proposed scaling algorithm

guard bits since at most two add operations are

performed. This result reveals that guard bits of

radix-8 IFFT butterfly can be decreased sig-

nificantly using the proposed scaling algorithm.

Overflows can also occur at pre- and

post-twiddle multiplication of IMDCT based on

IFFT. The process of pre- and post-twiddle multi-

plication of IMDCT is given in (6) and (7)
[9].

⎟
⎠
⎞

⎜
⎝
⎛ +

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡ −−=

N
kkjXkNX

N
kF

8
)18(2 exp]2[21

2
2][π

(6)

⎟
⎠
⎞

⎜
⎝
⎛ +

⋅=
N
nnfng)18(2exp][][π

(7)

In (6) and (7), each input sample needs one

guard bit since one add operation is performed

per each sample. One guard bit is added to the

input samples of both pre-twiddle multiplication

by (3) and post-twiddle multiplication by the last

stage of the proposed IFFT butterfly. Since initial

input stage of the proposed IFFT has no scaling

process, additional scaling process should be in-

serted after pre-twiddle multiplication to obtain

one guard bit. Figure 4 shows proposed overall

process of IMDCT calculation optimized for

16-bit fixed-point AAC decoding.

Ⅳ. Performance Test and Results

Low-cost 16-bit fixed-point AAC decoder has

been implemented using proposed algorithms. A

16-bit fixed-point AAC decoder is designed to

meet limited-accuracy criterion, not full-accuracy

criterion
[3][6][11]. In conformance standard[12], de-

coder with an accuracy level of 'k-bit' is defined.

The normalized root mean square error(RMSE) of

the decoder output should be less than

12/2)1(−− k and the maximum absolute er-

ror(MAE) should be less than 2−(k−2). According

to [12], the 'limited-accuracy' MP3 decoder de-

fined in [11] is equal to '12-bit' accuracy decoder

in terms of RMSE accuracy. In this case, RMSE

of the decoder should be less than 1.41×10
4 and

MAE should not exceed 9.77×10
4.

We utilize T−1 ~ T−8 series of audio sources

and implement AAC decoders using two kind of

decoding algorithms for performance test.

Algorithms shown below are included. (i) the pro-

posed algorithms(AGO1), (ii) the algorithm using

www.dbpia.co.kr

논문 / Implementation of a 16-Bit Fixed-Point MPEG-2/4 AAC Decoder for Mobile Audio Applications

245

Series
RMSE MAE

Remark
AGO1 AGO2 AGO1 AGO2

Standard < 1.41×10-4 < 1.41×10-4 < 9.77×10-4 < 9.77×10-4 Conformance Standard[12]

T-1 3.38×10-5 6.45×10-4 7.90×10-4 3.42×10-2 Symphony

T-2 8.80×10-6 6.97×10-4 6.86×10-4 4.91×10-2 Opera

T-3 1.25×10-5 4.18×10-4 7.17×10-4 4.88×10-2 Orchestral Work

T-4 2.96×10-5 1.40×10-3 1.03×10-3 6.68×10-2 Popular Music

T-5 1.97×10-5 3.35×10-4 9.30×10-4 2.66×10-2 Piano

T-6 1.65×10-3 4.28×10-2 1.40×10-3 5.69×10-2 Percussion

T-7 1.10×10-5 2.77×10-4 2.90×10-4 2.23×10-2 Vocal

T-8 7.32×10-5 1.56×10-3 9.89×10-4 3.48×10-2 Sweep Signal(20Hz～10kHz)

Table 3. Experimental results of performance test

previous 16-bit limitation method[3] and IMDCT

based on conventional radix-2 IFFT(AGO2).

Radix-2 IFFT in AGO2 uses the scaling strategy

to divide the numbers by two after addition
[13].

The reference series are outputs of 32-bit float-

ing-point decoder implemented using the same de-

coding method at each algorithm. Results shown

in the table 3 reveal that the implemented 16-bit

fixed-point AAC decoder using proposed algorithms

(AGO1) meets RMSE and MAE criterion of k =

12 accuracy level. The decoder provides sufficient

audio quality to replay audio contents for mobile

applications.

Ⅴ. Conclusion

In this paper, we propose optimal number of

guard bits of AAC spectral coefficients for

spectral processing and a novel fixed-point scaling

algorithm of IMDCT based on radix-8 IFFT for

16-bit AAC decoding, respectively. Using

proposed algorithms, we implemented an efficient

16-bit fixed-point AAC decoder. Results of

performance test show that audio contents can be

replayed in the decoder without quality

degradation.

References

[1] M. Watson and P. Buettner, “Design and

Implementation of AAC Decoders”, IEEE

Trans. Consumer Electronics, Vol. 46, No. 3,

pp. 819-824, Aug. 2000.

[2] K. Bang, J. Kim, N. Jeong, Y. Park, and D.

Youn, “Design Optimization of MPEG-2 AAC

Decoder”, IEEE Trans. Consumer Electronics,

Vol. 47, No. 4, pp. 895-903, Nov. 2001.

[3] S. You and Y. Hou, “Implementation of

IMDCT for MPEG2/4 AAC on 16-bit Fixed-

Point Digital Signal Processors”, Proc. 2004

IEEE Asia-Pacific Conf. on Circuits and

Systems, Vol. 2, pp. 813-816, Dec. 2004.

[4] C. Burgel, R. Bartholomaus, W. Fiesel, J.

Hilpert, A. Hoelzer, and K. Linzmeier,

“Beyond CD-Quality: Acvanced Audio

Coding(AAC) for High Resolution Audio

with 24-Bit Resolution and 96-kHz Sampling

Frequency”, AES 111th Convention, 2001.

[6] H. Wang, W. Xu, X. Dong, C. Li, and W.

Yu, “Implementation of MPEG-2 AAC on

16-bit Fixed-Point DSP”, Proc. IEEE

Asia-Pacific Conf. on Circuits and Systems

2006, pp. 1903-1906, Dec. 2006.

www.dbpia.co.kr

한국통신학회논문지 '08-03 Vol. 33 No. 3

246

[5] ISO/IEC 14496-3 : Information Technology -

Coding of Audio-Visual Objects - Part 3:

Audio, 1999.

[7] J. Princen and A. Bradley, “Analysis /

Synthesis Filter Bank Design Based on Time

Domain Aliasing Cancellation”, IEEE Trans.

on Acoustics, Speech, and Signal Processing,

Vol. 34, No 5, pp. 1153-1161, Oct. 1986.

[8] J. Princen, A. Johnson, and A. Bradley,

“Subband / Transform Coding Using Filter

Bank Designs Based on Time Domain

Aliasing Cancellation”, IEEE International

Conf. on Acoustics, Speech, and Signal

Processing '87, Vol. 12, pp. 2161-2164, Apr.

1987.

[9] P. Duhamel, Y. Mahieux, and J. Petit, “A

Fast Algorithm for the Implementation of

Filter Banks Based on 'Time Domain

Aliasing Cancellation'”, IEEE International

Conf. on Acoustics, Speech, and Signal

Processing '91, Vol. 3, pp.2209-2212, May

1991.

[10] L. Jia, Y. Gao, and H. Tenhunen, “A New

VLSI-Oriented FFT Algorithm and

Implementation”, Proc. 11th Annual IEEE

International ASIC Conf., pp. 337-341, Sep.

1998.

[11] ISO/IEC 11172-3, Information Technology -

Coding of Moving Pictures and Associated

Audio for Digital Storage Media at up to

About 1.5Mbit/s - Part 4: Compliance

Testing, 1993.

[12] ISO/IEC 13818-4 Amd. 1/Cor. 1, Information

Technology - Generic Coding of Moving

Pictures and Associated Audio Information -

Part 4: Conformance Testing, Amendment I:

Advanced Audio Coding(AAC) Conformance

Testing, Technical Corrigendum 1, 2003.

[11] A. V. Oppenhiem and R. W. Schafer,

“Discrete-Time Signal Processing”, Ch. 9,

Prentice-Hall, Englewood Cliffs, N. J, 1989.

Byoung Eul Kim Associate Member

He received the B.S. degree in

electronic engineering from

Sogang University, Seoul,

Korea, in 2006. He is currently

working towards the M.S. degree

in electrical engineering at

Sogang University. His current

research interests include digital

video/audio compression, real-time DSP systems, and

CAD systems.

Sun-Young Hwang Regular Member

He received the B.S. degree in

electronic engineering from

Seoul National University,

Seoul, Korea, in 1976, the M.S.

degree from Korea Advanced

Institute of Science in 1978, and

the Ph.D. degree in electrical

engineering from Stanford University, California,

U.S.A., in 1986. Since 1986, he has been with the

Center for Integrated Systems at Stanford University,

working on design of a high-level synthesis and simu-

lation system. In 1986 and 1987, he held a consulting

position at Palo Alto Research Center of Fairchild

Semiconductor Corporation. In 1989, he joined the

Department of Electronic Engineering at Sogang

University, where he is now a professor. His current

research interests include hardware/software co-de-

sign, DSP/VLSI systems design, and embedded sys-

tems design.

www.dbpia.co.kr

	Implementation of a 16-Bit Fixed-Point MPEG-2/4 AAC Decoder for Mobile Audio Applications
	ABSTRACT
	Ⅰ. 서론
	Ⅱ. Optimal Number of Guard Bits for Spectral Processing
	Ⅲ. Scaling Algorithm of IMDCT for 16-Bit Fixed-Point AAC Decoding
	Ⅳ. Performance Test and Results
	Ⅴ. Conclusion
	References

