
논문 08-33-06-03 한국통신학회논문지 '08-06 Vol. 33 No. 6

438

Efficient Method to Implement Max-Log-MAP Algorithm:

Parallel SOVA

Chang-Woo Lee* Regular Member

ABSTRACT

The efficient method to implement the Max-Log-MAP algorithm is proposed by modifying the conventional

algorithm. It is called a parallel soft output Viterbi algorithm (SOVA) and the rigorous proof is given for the

equivalence between the Max-Log-MAP algorithm and the parallel SOVA. The parallel SOVA is compared

with the conventional algorithms and we show that it is an efficient algorithm implementing the modified

SOVA in parallel.

Key Words : Parallel SOVA, Max-Log-MAP algorithm, Iterative codes, Turbo codes, Efficient method

※This study was supported by the Research Fund, 2007-2 of The Catholic University of Korea.

* School of Information, Communications and Electronics Engineering, The Catholic University of Korea (changwoo@catholic.ac.kr)

 논문번호：KICS2007-11-496, 접수일자：2007년 11월 6일, 최종논문접수일자：2008년 6월 20일

Ⅰ. Introduction

In order to reduce the computational complexity

of the maximum a posteriori (MAP) algorithm,

which is the optimum solution to decode iterative

codes such as turbo codes, the Log-MAP algorithm

is proposed
[1,2]. In the Log-MAP algorithm, by

transferring its operations to the log domain,

multiplications are replaced by additions and

exponential calculations are not required. The

complexity can be much reduced by approximating

the Log-MAP algorithm with a small performance

degradation in the Max-Log-MAP algorithm
[2]. The

efficient algorithm to implement the Max-Log-MAP

algorithm has been proposed in [3].

In this paper, we modify the efficient algorithm

proposed in [3], and it will be called as a parallel

SOVA, since it can be viewed as a parallel

implementation of the modified SOVA. Then, the

rigorous proof is given for the equivalence between

the pa ra l le l SOVA and the Max-Log-MAP

algorithm. The equivalence between the parallel

SOVA and the Max-Log-MAP algorithm is proved

by induction. Then, the parallel SOVA is compared

with the conventional algorithms and we show that

it is an efficient algorithm implementing the

modified SOVA in parallel.

This paper is organized as follows. The

conventional decoding algorithms for iterative codes

are given in Section 2. In Section 3, the parallel

SOVA is presented. The equivalence between the

parallel SOVA and the Max-Log-MAP algorithm is

proved and the parallel SOVA is compared with

the conventional algorithms in Section 4. Finally,

concluding remarks are given in Section 5.

Ⅱ. Decoding algorithms for iterative codes

The MAP algorithm is optimal component decoder

for turbo codes, and it can be summarized as

follows
[2,4,5,6]. If  is the -th decoded bit and


 is

the received symbol sequence, the log-likelihood

ratio (LLR), which is used as a measure of

reliability, is given by

www.dbpia.co.kr

논문 / Efficient Method to Implement Max-Log-MAP Algorithm: Parallel SOVA

439

   



 

 

 






 ′ ⇒  
  ′∙′∙


 ′ ⇒  

  ′∙′∙ 



 (1)

where s' and s are the starting and ending states

of each stage in the trellis, respectively. The ′
and  are the forward and backward metrics,

which are calculated by using the forward

recursion and backward recursion, respectively. The

′ is the branch metric. However, the

multiplications used in the recursive calculation of

the ′ and , and the exponents used to

calculate the ′ terms make the MAP

algorithm extremely complex.

The Log-MAP algorithm is theoretically identical

to the MAP algorithm, while the associated

complexity is significantly reduced by transferring

its operation to the log domain. In the Log-MAP

algorithm, the logarithmic value is calculated by

  



 ′ ⇒    ′′
 (2)

where a is +1 or -1. ′, ′ and 

are the log values of ′,  ′and ,

respectively.   can be calculated by using

the following Jacobian logarithm repetitively,

 ≡




 
   

 (3)

where  and  are two ′ satisfying 

 and  are computed using the following

forward and backward recursions for each state at

each stage,

 
  ′′ ′ ⇒  

  ′′ ′ ⇒     ⋯
 (4)

and

   
′ ′ ⇒  

 ′ ′ ⇒     ⋯
 (5)

In order to calculate the log-likelihood ratio, all

branches for each stage in the trellis are divided into

two classes satisfying   and  , respectively,

and  ′ ⇒    ′′ in

formula (2) is then computed for each group using

formula (3) repetitively. By omitting the log term

in formula (3), we can make an approximation to

the Log-MAP algorithm, which is called the

Max-Log-MAP algorithm. The Max-Log-MAP

algorithm finds the LLR 

 for a given bit 

by comparing the probability of the most likely

path giving   with the probability of the

most likelihood path giving  .

In the SOVA, the log-likelihood ratio is

calculated by taking the metric difference,   ,

as the reliability value. The LLR value at time k,



, is calculated using formula[2,7]



   ∙  ⋯   ≠ 

   (6)

where  is the value of the bit given by the ML

path, and 
 is the value of this bit for the path

which merged with the ML path and is discarded

at trellis stage i, as is shown in Fig. 1. The

SOVA gives a deraded performance compared to

the Max-Log-MAP algorithm, as is explained in

Section 4. By considering not only the competing

path but also those paths which merge into the

competing path, such as path-n in Fig. 1 in LLR

updates, the modified SOVA has the same

performance as the Max-Log-MAP algorithm
[7]. In

the modified SOVA, if 
    and 

 ≠ , the

LLR is updated by



  ∙

    (7)

where 
 represents the reliability difference

between the path-2 and the path-n and  is the

reliability value calculated in the SOVA.

www.dbpia.co.kr

한국통신학회논문지 '08-06 Vol. 33 No. 6

440

Maximum Likelihood
path

Competing path
(path-2)

Path-n which merges
into the competing path

ukk+3

uk

unk

Lnj

k(S0) K+1(S0) K+2(S0) K+3(S0)

Fig. 1. Trellis description with respect to the reliability

Ⅲ. Parallel SOVA

The performance of iterative decoders generally

improves until the number of iterations reaches a

certain value. Thus, it is essential to reduce the

computational complexity of the decoding algorithm.

An efficient algorithm to decode iterative codes has

been proposed in [3], and a modified version of

the algorithm, which is called as a parallel SOVA,

is presented in this Section. In the next Section, a

rigorous proof for the equivalence between the

parallel SOVA and the conventional Max-Log-MAP

algorithm is given. The parallel SOVA is described

as follows.

The forward recursion of the parallel SOVA is

the same as that of the conventional Max-Log-

MAP algorithm, except for the storage of the

difference metric. The difference metric,  , is

saved as

     ′′   
  ′′   

 (8)

In the backward recursion, the path metric,


 , is assigned to each branch. It is the

accumulated value of the difference metrics, as

given by


    









′   
       
      

′    
        
      

(9)

where the new backward metric, ′ , is the

minimum value of the path metrics in the

backward recursion, as given by

 
′ ′       (10)

The new backward recursion of the parallel SOVA

is illustrated in Fig. 2. This value is accumulated

with the minimum differences between the ML

path and the path including the corresponding

branch, as can be seen in formulas (9) and (10).

The value of the path metric represents the

difference of reliability between the maximum

likelihood (ML) path and the path which includes

the specific branch at stage k. The value of the

path metric for the ML path is zero, while those

for the other paths are always greater than zero.

The initial value of ′  is zero or infinity if

the trellis is terminated. If the trellis is not

terminated, the value of ′  for the state on

the estimated ML path can be set to zero. The

LLR is calculated directly as

)(lk sΔ
)(' lk sB

)(' mk sB)(mk sΔ

)()(')(')(1
lklklkl

u
k ssBorsBsD k Δ+=−=

)()(')(')(1
mkmkmkm

u
k ssBorsBsD k Δ+=+=

)()(')(')(1
mkmkmkm

u
k ssBorsBsD k Δ+=−=

)()(')(')(1
lklklkl

u
k ssBorsBsD k Δ+=+=

))(),(min(

)'('
11

1

m
u
kl

u
k

ik

sDsD

sB
kk +=−=

−

=

))(),(min(

)'('
11

1

l
u
km

u
k

jk

sDsD

sB
kk +=−=

−

=

Fig. 2. Backward recursion for the proposed algorithm





 ′
   ′ ′

   ′

 (11)

Notice that the minimum value of the path

metric in formula (11) is the minimum value among

the relative differences of reliability between the

ML path and the path which includes the branch

satisfying each condition at stage k.

www.dbpia.co.kr

논문 / Efficient Method to Implement Max-Log-MAP Algorithm: Parallel SOVA

441

The number of operations involving real numbers

can be analyzed to compare the complexities

between the parallel SOVA and the conventional

Max-Log-MAP algorithm. The forward recursion for

the parallel SOVA is same as that of the

conventional Max-Log-MAP algorithm, except for

the saving of the difference metric. In the backward

recursion, the number of additions of the parallel

SOVA is half of that for the Max-Log-MAP

algorithm, since additions are needed for only a half

of the paths. In calculating the LLR, two additions

in formula (2) of the conventional algorithm are no

longer needed in the parallel SOVA. Moreover, if

the path is the ML path, then the minimum value

for the path metric, 
′, is known to be

zero, without the need of calculation, when using

the parallel SOVA. The number of additions

required by the parallel SOVA is less than 40% of

that required by the conventional Max-Log-MAP

algorithm, as was analyzed in [3].

Ⅳ. Comparison between the parallel SOVA
and the conventional algorithms

4.1 Equivalence between the parallel SOVA
and the Max-Log-MAP algorithm

The parallel SOVA produces the same LLR value

as the conventional Max-Log-MAP algorithm, and the

rigorous proof for that is given as follows. First, in

order to illustrate the backward recursion of the

parallel SOVA, the path metrics for the last two

stages are shown in Fig. 3. For the sake of simplicity,

we assume that the ML path consists of all zero bits.

The path metrics for the two branches at stage K are zero

and   ′′   ′′ ,
respectively. Thus, the backward metric of the state 

at stage K-1 is given by

 ′′    ′′ 
  ′′ 

 (12)

In order to prove the equivalence between the

parallel SOVA and the Max-Log-MAP algorithm

by induction, let's assume that the backward metric

of the state  at an arbitrary stage k is given by

′′
 ′′′′

 (13)

Then, the path metric can be calculated as follows.

First, let's assume that the branch, which enters the

state  at stage k from the state  at stage k-1, is

selected at the state  at stage k. Then, the path

metric, 
   , for the selected branch is equal

to the backward metric, ′ , by formula (9). In

this case, since   is equal to

  ′′  in the forward recursion, the path

metric is calculated as


      ′ ′
   ′′ ′
  ′′ ′

 (14)

On the other hand, if the branch, which enters the

state  at stage k from the state  at stage k-1, is

not selected, the path metric for the branch is equal

to ′   by formula (9). Since the value

of   is equal to that of   ′′ ,
the path metric can be calculated as


      ′ ′
  ′′   ′′ 
   ′′ ′
  ′′ ′

(15)

which is the same result as that obtained using

formula (14). Then, the backward metric of the

state i at the stage k-1(k<K) is given by

 ′′    ′′ ′
  ′′ ′

 (16)

where the backward metric is the minimum value

between the two path metrics at each state of each

www.dbpia.co.kr

한국통신학회논문지 '08-06 Vol. 33 No. 6

442

stage. Since ′ is equal to ′  at stage

K-1 in (13), we can show from formulas (12),

(13) and (16), by induction, that the backward

metric at the state  of the stage ≤≤

is given by

′′  ′ 
  



′ 

′ 
  



′

 (17)

where ′ and  are the starting and ending

states at each stage, respectively. The path metric,


   , is given by


       ′′  

  



′ 

  ′′  
  



′
(18)

)(0sKΔ

ML path

)0()(0
1 =−= sD Ku

K
)0()(' 0 =sB K

)0()(0
1

1
1 =−=

−
− sD Ku

K

10
'
1

'
11

10
'
0

'
01

00
1

)),()((

)),()((

)()(

+=−

−=−

+=

Γ+−

Γ+=

Δ=

K

K

K

uKK

uKK

K
u
K

sssA

sssA

ssD

)(01 sK−Δ

)(11 sK−Δ

10
'
11

'
12

10
'
01

'
02

010
1

1

)),()((

)),()((

)()(1

+=−−

−=−−

−
+=

−

Γ+−

Γ+=

Δ=−

K

K

K

uKK

uKK

K
u
K

sssA

sssA

ssD

)(1
1

1
1 sD Ku

K
−=

−
−

10
'
11

'
21

'
22

10
'
00

'
01

'
02

1
1

1

)),(),()((

)),(),()((

)(1

+=−−

−=−−

+=
−

Γ+Γ+−

Γ+Γ+=

−

K

K

K

uKKK

uKKK

u
K

sssssA

sssssA

sD

)0()(' 01 =− sB K

)()(' 0
1

11 sDsB Ku
KK

+=
− =

Fig. 3. Metrics for the last two stage

Since the backward metric is accumulated with

the minimum path metric and the path metric

represents the difference of reliability between the

ML path and the path which includes the branch,

the backward metric represents the minimum

difference of reliability between the ML path and

the path which includes the corresponding branch.

Thus, the LLR value calculated in (11) is the

same as that calculated by the conventional

Max-Log-MAP algorithm.

4.2 Comparing various decoding algorithms
The decoding algorithms for iterative codes can

be compared as follows. First, the SOVA gives a

degraded performance compared to the Max-Log-

MAP algorithm due to the following reasons[2]. In

the Max-Log-MAP algorithm, once the path merges

with the ML path, it will have the same value of

 as the ML path. Hence, taking the difference

between the metrics of the two merging paths in

the SOVA is equivalent to taking the difference

between two values of   ′′
in the Max-Log-MAP algorithm. The only

difference is that in the Max-Log-MAP algorithm

one path will be the ML path, and the other will

be the most likely path that gives a different hard

decision for  . On the other hand, in the SOVA

one path will be the ML path, but the other will

be the most likely path that gives a different hard

decision for  and survives to merge with the

ML path. More likely paths, which give a different

hard decision for the bit  may have been

discarded before they merge with the ML path.

In the parallel SOVA, the reliability difference

is calculated using the minimum path metrics in

formula (11), where one of the minimum value is

zero for the ML path and the other is the

minimum value among the reliability differences

between the ML path and the pathes which include

branches with the different bit value from the ML

path. Those pathes are either the competing pathes

merging with the ML path or the pathes that

eventually merge with the competing path. Thus,

the parallel SOVA provides the same performance

with the modified SOVA. The parallel SOVA can

be viewed as the parallel implementation of the

modified SOVA, since the metric difference and

the accumulated difference are calculated in parallel

at each state of each stage. It can be implemented

more regularly than the modified SOVA.

www.dbpia.co.kr

논문 / Efficient Method to Implement Max-Log-MAP Algorithm: Parallel SOVA

443

Ⅴ. Conclusion

The rigorous proof for the equivalence between

the parallel SOVA and the Max-Log-MAP

algorithm was given and the various decoding

algorithms were compared. It can be concluded

that the parallel SOVA is an efficient algorithm to

implement the Max-Log-MAP algorithm and it can

be also considered as the parallel implementation

of the modified SOVA. Thus, the parallel SOVA

can be used as an efficient method to decode

iterative codes such as turbo codes.

References

[1] C. Berrou and A. Glavieux, “Near optimum

error correcting coding and decoding:

turbo-codes,” IEEE Trans. Commun., Vol.44,

No.10, pp.1261-1271, Oct. 1996.

[2] J.P. Woodard and L. Hanzo, “Comparative

study of turbo decoding techniques: an

overview,” IEEE Trans. Veh. Technol.,

Vol.49, No.6, pp.2208-2233, June 2000.

[3] C. W. Lee, “Efficient algorithm for decoding

concatenated codes,” IEICE Trans. on

Commun., Vol.E87-B, No.11, pp.3180-3187,

Nov. 2004.

[4] W.J. Gross and P.G.Gulak, “Simplified MAP

algorithm suitable for implementation of turbo

decoders,” Electronics Letters, Vol.34, No.16,

pp.1577-1578, 1998.

[5] L.R. Bahl, J. Cocke, F. Jelinek and J. Raviv,

“Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans.

Inform. Theory, Vol.20, No.2, pp.284-287,

Mar. 1974.

[6] L. Hanzo, T.H. Liew and B.L. Yeap, Turbo

coding, turbo equalization and space-time

coding, John Wiley and Sons, 2002.

[7] M.P.C. Fossorier, F. Burkert, S. Lin and J.

Hagenauer, “On the equivalence between

SOVA and Max-Log-MAP decodings,” IEEE

Commun. Letters, Vol.2 No.5, pp.137-139,

May 1998.

이 창 우 (Chang-Woo Lee) 정회원

현 재 가톨릭대학교 정보통신전자공학부 교수

<관심분야> 영상 통신, 영상 압축, turbo 부호

www.dbpia.co.kr

	Efficient Method to Implement Max-Log-MAP Algorithm : Parallel SOVA
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Decoding algorithms for iterative codes
	Ⅲ. Parallel SOVA
	Ⅳ. Comparison between the parallel SOVA and the conventional algorithms
	Ⅴ. Conclusion
	References

