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ABSTRACT

The efficient method to implement the Max-Log-MAP algorithm is proposed by modifying the conventional 

algorithm. It is called a parallel soft output Viterbi algorithm (SOVA) and the rigorous proof is given for the 

equivalence between the Max-Log-MAP algorithm and the parallel SOVA. The parallel SOVA is compared 

with the conventional algorithms and we show that it is an efficient algorithm implementing the modified 

SOVA in parallel.
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Ⅰ. Introduction

In order to reduce the computational complexity 

of the maximum a posteriori (MAP) algorithm, 

which is the optimum solution to decode iterative 

codes such as turbo codes, the Log-MAP algorithm 

is proposed
[1,2]. In the Log-MAP algorithm, by 

transferring its operations to the log domain, 

multiplications are replaced by additions and 

exponential calculations are not required. The 

complexity can be much reduced by approximating 

the Log-MAP algorithm with a small performance 

degradation in the Max-Log-MAP algorithm
[2]. The 

efficient algorithm to implement the Max-Log-MAP 

algorithm has been proposed in [3].

In this paper, we modify the efficient algorithm 

proposed in [3], and it will be called as a parallel 

SOVA, since it can be viewed as a parallel 

implementation of the modified SOVA. Then, the 

rigorous proof is given for the equivalence between 

the  pa ra l le l  SOVA and  the  Max-Log-MAP 

algorithm. The equivalence between the parallel 

SOVA and the Max-Log-MAP algorithm is proved 

by induction. Then, the parallel SOVA is compared 

with the conventional algorithms and we show that 

it is an efficient algorithm implementing the 

modified SOVA in parallel.

This paper is organized as follows. The 

conventional decoding algorithms for iterative codes 

are given in Section 2. In Section 3, the parallel 

SOVA is presented. The equivalence between the 

parallel SOVA and the Max-Log-MAP algorithm is 

proved and the parallel SOVA is compared with 

the conventional algorithms in Section 4. Finally, 

concluding remarks are given in Section 5.

Ⅱ. Decoding algorithms for iterative codes

The MAP algorithm is optimal component decoder 

for turbo codes, and it can be summarized as 

follows
[2,4,5,6]. If   is the -th decoded bit and 


  is 

the received symbol sequence, the log-likelihood 

ratio (LLR), which is used as a measure of 

reliability, is given by
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   



 

 

 






 ′ ⇒  
  ′∙′∙


 ′ ⇒  

  ′∙′∙ 



  (1)

where s' and s are the starting and ending states 

of each stage in the trellis, respectively. The ′ 
and  are the forward and backward metrics, 

which are calculated by using the forward 

recursion and backward recursion, respectively. The 

′ is the branch metric. However, the 

multiplications used in the recursive calculation of 

the ′ and , and the exponents used to 

calculate the ′ terms make the MAP 

algorithm extremely complex. 

The Log-MAP algorithm is theoretically identical 

to the MAP algorithm, while the associated 

complexity is significantly reduced by transferring 

its operation to the log domain. In the Log-MAP 

algorithm, the logarithmic value is calculated by 

  



 ′ ⇒    ′′
  (2)

where a is +1 or -1. ′, ′ and  

are the log values of  ′,  ′and , 

respectively.   can be calculated by using 

the following Jacobian logarithm repetitively, 

 ≡




 
   

      (3) 

where   and   are two ′ satisfying  

 and  are computed using the following 

forward and backward recursions for each state at 

each stage,

 
  ′′ ′ ⇒  

  ′′ ′ ⇒     ⋯
  (4)

and

   
′ ′ ⇒  

 ′ ′ ⇒     ⋯
  (5)

In order to calculate the log-likelihood ratio, all 

branches for each stage in the trellis are divided into 

two classes satisfying   and  , respectively, 

and  ′ ⇒    ′′ in 

formula (2) is then computed for each group using 

formula (3) repetitively. By omitting the log term 

in formula (3), we can make an approximation to 

the Log-MAP algorithm, which is called the 

Max-Log-MAP algorithm. The Max-Log-MAP 

algorithm finds the LLR 

 for a given bit   

by comparing the probability of the most likely 

path giving   with the probability of the 

most likelihood path giving  .

In the SOVA, the log-likelihood ratio is 

calculated by taking the metric difference,   , 

as the reliability value. The LLR value at time k, 



, is calculated using formula[2,7]



   ∙  ⋯   ≠ 

    (6)

where   is the value of the bit given by the ML 

path, and 
  is the value of this bit for the path 

which merged with the ML path and is discarded 

at trellis stage i, as is shown in Fig. 1. The 

SOVA gives a deraded performance compared to 

the Max-Log-MAP algorithm, as is explained in 

Section 4. By considering not only the competing 

path but also those paths which merge into the 

competing path, such as path-n in Fig. 1 in LLR 

updates, the modified SOVA has the same 

performance as the Max-Log-MAP algorithm
[7]. In 

the modified SOVA, if 
     and 

 ≠ , the 

LLR is updated by 



  ∙

      (7)

where 
  represents the reliability difference 

between the path-2 and the path-n and   is the 

reliability value calculated in the SOVA. 

www.dbpia.co.kr



한국통신학회논문지 '08-06 Vol. 33 No. 6

440

Maximum Likelihood 
path

Competing path
(path-2)

Path-n which merges 
into the competing path

ukk+3

uk

unk

Lnj

k(S0) K+1(S0) K+2(S0) K+3(S0)

Fig. 1. Trellis description with respect to the reliability

Ⅲ. Parallel SOVA

The performance of iterative decoders generally 

improves until the number of iterations reaches a 

certain value. Thus, it is essential to reduce the 

computational complexity of the decoding algorithm. 

An efficient algorithm to decode iterative codes has 

been proposed in [3], and a modified version of 

the algorithm, which is called as a parallel SOVA, 

is presented in this Section. In the next Section, a 

rigorous proof for the equivalence between the 

parallel SOVA and the conventional Max-Log-MAP 

algorithm is given. The parallel SOVA is described 

as follows. 

The forward recursion of the parallel SOVA is 

the same as that of the conventional Max-Log- 

MAP algorithm, except for the storage of the 

difference metric. The difference metric,  , is 

saved as

     ′′   
  ′′   

   (8)

In the backward recursion, the path metric, 


 , is assigned to each branch. It is the 

accumulated value of the difference metrics, as 

given by 


    









′   
       
      

′    
        
      

(9)

where the new backward metric, ′ , is the 

minimum value of the path metrics in the 

backward recursion, as given by

 
′ ′         (10)

The new backward recursion of the parallel SOVA 

is illustrated in Fig. 2. This value is accumulated 

with the minimum differences between the ML 

path and the path including the corresponding 

branch, as can be seen in formulas (9) and (10). 

The value of the path metric represents the 

difference of reliability between the maximum 

likelihood (ML) path and the path which includes 

the specific branch at stage k. The value of the 

path metric for the ML path is zero, while those 

for the other paths are always greater than zero. 

The initial value of ′  is zero or infinity if 

the trellis is terminated. If the trellis is not 

terminated, the value of ′  for the state on 

the estimated ML path can be set to zero. The 

LLR is calculated directly as 
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Fig. 2. Backward recursion for the proposed algorithm





 ′
   ′ ′

   ′

  (11)

Notice that the minimum value of the path 

metric in formula (11) is the minimum value among 

the relative differences of reliability between the 

ML path and the path which includes the branch 

satisfying each condition at stage k. 
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The number of operations involving real numbers 

can be analyzed to compare the complexities 

between the parallel SOVA and the conventional 

Max-Log-MAP algorithm. The forward recursion for 

the parallel SOVA is same as that of the 

conventional Max-Log-MAP algorithm, except for 

the saving of the difference metric. In the backward 

recursion, the number of additions of the parallel 

SOVA is half of that for the Max-Log-MAP 

algorithm, since additions are needed for only a half 

of the paths. In calculating the LLR, two additions 

in formula (2) of the conventional algorithm are no 

longer needed in the parallel SOVA. Moreover, if 

the path is the ML path, then the minimum value 

for the path metric, 
′, is known to be 

zero, without the need of calculation, when using 

the parallel SOVA. The number of additions 

required by the parallel SOVA is less than 40% of 

that required by the conventional Max-Log-MAP 

algorithm, as was analyzed in [3].

Ⅳ. Comparison between the parallel SOVA 
and the conventional algorithms

4.1 Equivalence between the parallel SOVA 
and the Max-Log-MAP algorithm

The parallel SOVA produces the same LLR value 

as the conventional Max-Log-MAP algorithm, and the 

rigorous proof for that is given as follows. First, in 

order to illustrate the backward recursion of the 

parallel SOVA, the path metrics for the last two 

stages are shown in Fig. 3. For the sake of simplicity, 

we assume that the ML path consists of all zero bits. 

The path metrics for the two branches at stage K are zero 

and   ′′   ′′ , 
respectively. Thus, the backward metric of the state   

at stage K-1 is given by 

 ′′    ′′ 
  ′′ 

    (12)

In order to prove the equivalence between the 

parallel SOVA and the Max-Log-MAP algorithm 

by induction, let's assume that the backward metric 

of the state   at an arbitrary stage k is given by

′′
 ′′′′

  (13)

Then, the path metric can be calculated as follows. 

First, let's assume that the branch, which enters the 

state   at stage k from the state   at stage k-1, is 

selected at the state   at stage k. Then, the path 

metric, 
   , for the selected branch is equal 

to the backward metric, ′ , by formula (9). In 

this case, since   is equal to 

  ′′  in the forward recursion, the path 

metric is calculated as  


      ′ ′
   ′′ ′
  ′′ ′

 (14)

On the other hand, if the branch, which enters the 

state   at stage k from the state   at stage k-1, is 

not selected, the path metric for the branch is equal 

to ′   by formula (9). Since the value 

of   is equal to that of   ′′ , 
the path metric can be calculated as 


      ′ ′
  ′′   ′′ 
   ′′ ′
  ′′ ′

(15)

which is the same result as that obtained using 

formula (14). Then, the backward metric of the 

state i at the stage k-1(k<K) is given by

 ′′    ′′ ′
  ′′ ′

 (16)

where the backward metric is the minimum value 

between the two path metrics at each state of each 
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stage. Since ′ is equal to ′  at stage 

K-1 in (13), we can show from formulas (12), 

(13) and (16), by induction, that the backward 

metric at the state   of the stage ≤≤ 

is given by 

′′  ′ 
  



′ 

′ 
  



′

  (17)

where ′ and  are the starting and ending 

states at each stage, respectively. The path metric, 


   , is given by


       ′′  

  



′ 

  ′′  
  



′
(18)

)( 0sKΔ

ML path

)0()( 0
1 =−= sD Ku

K
)0()(' 0 =sB K

)0()( 0
1

1
1 =−=

−
− sD Ku

K

10
'
1

'
11

10
'
0

'
01

00
1

)),()((

)),()((

)()(

+=−

−=−

+=

Γ+−

Γ+=

Δ=

K

K

K

uKK

uKK

K
u
K

sssA

sssA

ssD

)( 01 sK−Δ

)( 11 sK−Δ

10
'
11

'
12

10
'
01

'
02

010
1

1

)),()((

)),()((

)()(1

+=−−

−=−−

−
+=

−

Γ+−

Γ+=

Δ=−

K

K

K

uKK

uKK

K
u
K

sssA

sssA

ssD

)( 1
1

1
1 sD Ku

K
−=

−
−

10
'
11

'
21

'
22

10
'
00

'
01

'
02

1
1

1

)),(),()((

)),(),()((

)(1

+=−−

−=−−

+=
−

Γ+Γ+−

Γ+Γ+=

−

K

K

K

uKKK

uKKK

u
K

sssssA

sssssA

sD

)0()(' 01 =− sB K

)()(' 0
1

11 sDsB Ku
KK

+=
− =

Fig. 3. Metrics for the last two stage

Since the backward metric is accumulated with 

the minimum path metric and the path metric 

represents the difference of reliability between the 

ML path and the path which includes the branch, 

the backward metric represents the minimum 

difference of reliability between the ML path and 

the path which includes the corresponding branch. 

Thus, the LLR value calculated in (11) is the 

same as that calculated by the conventional 

Max-Log-MAP algorithm.

4.2 Comparing various decoding algorithms
The decoding algorithms for iterative codes can 

be compared as follows. First, the SOVA gives a 

degraded performance compared to the Max-Log- 

MAP algorithm due to the following reasons[2]. In 

the Max-Log-MAP algorithm, once the path merges 

with the ML path, it will have the same value of 

 as the ML path. Hence, taking the difference 

between the metrics of the two merging paths in 

the SOVA is equivalent to taking the difference 

between two values of   ′′ 
in the Max-Log-MAP algorithm. The only 

difference is that in the Max-Log-MAP algorithm 

one path will be the ML path, and the other will 

be the most likely path that gives a different hard 

decision for  . On the other hand, in the SOVA 

one path will be the ML path, but the other will 

be the most likely path that gives a different hard 

decision for   and survives to merge with the 

ML path. More likely paths, which give a different 

hard decision for the bit   may have been 

discarded before they merge with the ML path. 

In the parallel SOVA, the reliability difference 

is calculated using the minimum path metrics in 

formula (11), where one of the minimum value is 

zero for the ML path and the other is the 

minimum value among the reliability differences 

between the ML path and the pathes which include 

branches with the different bit value from the ML 

path. Those pathes are either the competing pathes 

merging with the ML path or the pathes that 

eventually merge with the competing path. Thus, 

the parallel SOVA provides the same performance 

with the modified SOVA. The parallel SOVA can 

be viewed as the parallel implementation of the 

modified SOVA, since the metric difference and 

the accumulated difference are calculated in parallel 

at each state of each stage. It can be implemented 

more regularly than the modified SOVA.
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Ⅴ. Conclusion

The rigorous proof for the equivalence between 

the parallel SOVA and the Max-Log-MAP 

algorithm was given and the various decoding 

algorithms were compared. It can be concluded 

that the parallel SOVA is an efficient algorithm to 

implement the Max-Log-MAP algorithm and it can 

be also considered as the parallel implementation 

of the modified SOVA. Thus, the parallel SOVA 

can be used as an efficient method to decode 

iterative codes such as turbo codes.
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