
논문 08-33-10-01 한국통신학회논문지 '08-10 Vol. 33 No. 10

※ 본 연구는 2007학년도 서일대학 교내학술연구비지원으로 수행되었음.

* 서일대학 컴퓨터전자과(hongsh@seoil.ac.kr)

 논문번호：08027-0415, 접수일자：2008년 4월 15일

UML기반의 창의 공학용 로봇 설계

정회원 홍 선 학*

Creative Engineering Robot Design with UML

Hong Seon Hack* Regular Members

요 약

본 논문에서는 통일 모델링 언어(UML)기법을 사용하여 창의공학에서 활용할 수 있는 로봇 설계기법을 제시한

다. 최근 IT 분야의 교육 목표를 창의적 사고방식을 키우기 위한 시대적인 요구에 맞추어, 본 연구를 통하여 창의

공학용 로봇 활용을 GUI 프로그램과 접목시킬 수 있도록 UML기반의 객체지향 프로그래밍(OOP)개념을 적용한

다. 창의공학 분야의 프로그램에 사용되는 Java 또는 C#과 같은 객체지향 기법은 시스템 전체를 유연하게 설계하

고, 강인하며 유지 관리에서 효율적이며, 여기서 얻어진 결과를 창의 로봇 분야의 시스템 개발도구로 활용할 수

있도록 하였다. 또한 본 논문에서는 GUI 환경에서 UML기반의 창의공학용 로봇 설계기법을 실험을 통하여 구현

하였다.

Key Words : Creative Robot, UML, OOP, Refactoring

ABSTRACT

This paper proposes the techniques and theory works of the creative engineering robot with UML(Unified

Modeling Language) base. Now, with the IT development of school curriculum has been interested, we apply

the OOP(Object-Oriented Programing) concept of UML to the GUI program which used to creative engineering

robot fields. The object-oriented analysis and design skills are essential for the creation of well-designed,

robust, and maintainable software such as Java or C# with creative engineering robot and are especially

applicable to the system development tools of creative engineering robot. This paper experiments the design

method of creative robot with UML under GUI programming environments.

Ⅰ. Introduction

The Unified Modeling Language(UML) has become

the universally-accepted language for software design

blueprints. UML is the visual language used to convey

software design patterns that are what allow us to

describe design fragments, and reuse design ideas.

Design patterns give a name and form to abstract

heuristics, rules, and best practices of object-oriented

techniques. In the beginning of 1990th, James

Rumbaugh developed the OMT(Object Modeling

Technic), Grady Booch handed out the Booch method,

and Ivar Jacobson introduced the OOSE(Object Oriented

Software Engineering), and then they worked together

at IBM and collaborated on a work of developing

the UML.[1].

The UML started as an effort by Booch and

Rumbaugh in 1994 not only to create a common

notation, but to combine their two methods - the

Booch and OMT methods. Thus the first public

343

www.dbpia.co.kr

한국통신학회논문지 '08-10 Vol. 33 No. 10

그림 1. 객체의 로봇 응용
Fig. 1. Objects in a robotics application

draft of what today is the UML was presented as

the unified Method. They were soon joined at

Rational Corporation by Ivar Jacobson, the creator

of the Objectory method, and as a group came

to be known as the three amigos. It was at this

point that they decided to reduce the scope of

their effort, and focus on a common diagramming

notation-the UML-rather than a common method.

The UML is a visual language for specifying,

constructing and documenting the artifacts of systems.

The visual in the above is a key point-the UML

is the standard diagramming notation for drawing

or presenting pictures related to software-primarily

OO software. At this point, diagrams help us see

or explore more of the big picture and relationships

between analysis and software elements, while

allowing us to ignore or hide uninteresting details.

That's the simple and essential value of the UML.

The UML includes class diagram to illustrate classes,

interfaces, and their associations.[2,3]

Ⅱ. Basic Theory

This chapter provides a fundamental overview of

the creative robot system. Object oriented programming

(OOP) has a significant difference that has powerful

implications: usually defined by a theme. For example,

imagine you are trying to program a robot to

scan an object in a 3-dimension scanning robotics

system. The robot needs to be able to rotate, and

also to scan an object.

2.1 OOP of Robot programming

One object would contain functionality centered

on the theme of rotating, and another object would

contain functionality for scanning an object. These

units are defined by classes in Java. A block

diagram of this OOP robot programming system

shown in Fig. 1 illustrates the graphical overview

of the objects in a robotics application.
[4,5,6].

The ScanningObject class would contain all the

methods for choosing which object to scan, and

the RobotRotation class would contain all the

methods to move object around the 3-D scanning

robotics system. Classes are created using methods

(functionality) and fields(data). Once the class is

defined, it can be instantiated, which means an object

is created which can be manipulated in code. One

class can be used to create many objects. Another

powerful feature of OOP is type extensibility. This

is the ability of classes to inherit data and functionality

from other classes.

2.2 Definition of robot classes

The purpose of modeling or sketching UML is

primarily to understand, not to document. That is,

the very act of modeling can and should provide

a way to better understand the design of creative

robot. In this paper, a domain model is used for

creating the classes of creative robot OOP analysis.

A domain model can acts as a source of inspiration

for designing the software objects and will be an

input to several artifacts. So domain model is a

conceptual perspective of objects in a real situation

of the robot environment, not a software perspective.

There are four classes which are robot class, driver

class, rotation class, and sensor class. 3-D scanning

robotics system will be operated by the driver,

controlled by the rotation, and monitored by the

sensor.
[7,8]

2.3 Bite into Bluetooth

In this paper, we use the bluetooth communication,

a wireless control of robots that gave us the enormous

resources and brainpower that can be harnessed

through wireless tools. A single Bluetooth dongle

effectively acts like many wireless USB ports.

Bluetooth eliminates cables from keyboard, mice

and game controllers.

The major advantage of Bluetooth versus the infrared

(IR) system used by other robotic developing system

344

www.dbpia.co.kr

논문 / UML기반의 창의 공학용 로봇 설계

is the elimination of in-line-with problem. Radio

waves travel through solid objects and in all directions,

whereas the IR port on the other system had to

point right at the IR tower with no intervening

structures.

Bluetooth operates on 2.45GHz and is capable of

transmitting data at 460.8 Kbit/s. Multiple Bluetooth

dongles can be used in the same area since Bluetooth

uses frequency hopping to avoid conflicts. And therefore,

We use the pairing technic with robotics to the

PC. Pairing occurs when one device tells another

device that they can be friends. The reason for pairing

is to avoid someone accessing your Bluetooth

devices without permission. By pairing, we gave

the robotics permission to interact as like plugging

a USB cable into a computer. Pairing is done by

locating the Bluetooth device, then entering a four

digit combination on both devices.

Especially, we used the iCommand that is a

package for remote control from a computer. this

package seeks to mirror robots as closely as possible.

which means the classes and methods tend to

look similar. The iCommand controls robots by

sending individual commands wirelessly. In some

more detail, Speed is often a concern for robot

programmers. Because all commands are sent to

the robotics through Bluetooth, the iCommand

reacts a little slower than on the other devices.

However, most robots are slow and don't require

fast processors. It takes a few seconds to move a

foot, so a hundred milliseconds here and there isn't

a big deal for most robot applications. Since the

iCommand is running on your computer and uses

the standard Sun Java API, we have access to an

incredible number of resources, such as the Internet

and other hardware devices on our computer. We

used the Eclipse, an IDE to develop the iCommand

code.
[9,10]

2.4 Setup the leJOS API

The name lejos means ‘far’ in spanish. In the

name leJOS, the letters JOS are capitalized because

those letters stand for Java Operating System. Since

le means ‘the’ in several languages, this would

mean the Java Operating System. The leJOS JVM

(Java Virtual machine) is written in C code in a

very platform independent style, which means it

is easily ported to other machines. So far it has

appeared on the Gameboy Advance and the NXT

bricks.

There are also tools on the PC side to compile

and upload code to the leJOS JVM. leJOS is

multiplatform, and recently that means Windows,

Linux, and Macintosh. leJOS software is available

for each of these platforms, allowing you to develop

the program under your favorite operating system.

In this paper we use the Windows that is to

download the latest version from www.lejos.org.

One of the best open source IDE(Integrated

Development Environment) is Eclipse by IBM.

It's free, powerful, and easy to use. It makes

sense to use a more advanced IDE with the

hardware since our code can grow quite large.

Eclipse can be downloaded from www.eclipse.org.

We could build the following robot: it wanders

around our house avoiding objects with the distance

sensor. If the sensor misses an object, the robot

can still tell if the wheels are stuck by monitoring

decreases in rotation speed. If the robot tips over,

it uses a tilt sensor to identify the problem. This

is possible with leJOS software. And we should

know where to find the methods in the API.

There are many classes in the API such as the

battery class, the button class, the sensor classes

and the motor class. Especially the sensor classes

include the lightsensor, the soundsensor, the

touchsensor and the ultrasonicsensor.

The battery class allows to determine the voltage

produced by the batteries. Rechargeable batteries

provide approximately 7.4 volts, while alkaline

batteries produce 9 volts. The button class contains

static instances of the four buttons. These four

instances are ENTER, ESCAPE, LEFT, and RIGHT.

This class implements the ButtonListener interface,

which contains two methods definitions: buttonPressed()

and buttonReleased(). These interface methods must

be defined in the class implementing the interface.

The motor class contains three instances of motor:

Motor A, Motor B, and Motor C. Speed is in

degree per second.

345

www.dbpia.co.kr

한국통신학회논문지 '08-10 Vol. 33 No. 10

그림 2. 물체 스캐닝
Fig. 2. Scanning an object

표 1. 3D 로봇 스캐너의 특성값
Table 1. Characteristic values of 3D robotic scanner

Measurement Value Unit

 Distance from sensor to center 20 cm

 Full rotation counts 12600

 Vertical movement per scan 2.5 cm

The actual maximum speed of the motor depends

on battery voltage and load. The lightsensor class

contains the readvalue() method which returns a

number between 0 and 100. The soundsensor class

allows access to the sound sensor, and is operated

in two modes, dB and dBA. The ultrasonicsensor

class is used to obtain distance readings from the

ultrasonic sensor.
[11,12].

Ⅲ. 3D Robotic Scanning

In this paper, 3D robotic scanning program is

somewhat large because, besides needing to control

the actual scanning of real-images, it also needs

to enable to adjust the image threshold and select

a low or high resolution scan.

3.1 Programming the robotic scanner

The important part about programming this device

is that it needs to know x, y, and z coordinates

for every point that it scans. However, the distance

sensor only returns one value: the distance to the

object. So we'll need to use trigonometry to produce

coordinates from this value.

The robotic scanner take a measurement at equal

increment all around the object as described by

Fig. 2.

In this paper, 3D robotic scanner produces exactly

the same results as moving a sensor around the

object. At the second scan, the effect is the same

as if the sensor were moving around the object.

It's easier to understand the calculations by imagining

the platform standing still and the sensor moving

around the object. We'll designate the center of

the platform as (0,0,0) on our coordinate system.

The position of the sensor when it begins scanning

will be designated at 0 degree, and rotation will

occur counterclockwise.

3.2 Calculating the scanning algorithm

The scanner rotates around the object taking

various distance measurements. At 

, the y coordinate

is zero and the x coordinate is the distance from

the center of the platform to the position at the

edge of the object. The distance(

) from the center

of the platform to the sensor is constant, and we

can easily find it by measuring. However, we want

the distance from the center to the edge of the object.

 

 


(1)

At 

, the x and y coordinates are positive

which can be calculated from  and the angle

formed at point A. The equations to calculate all

points around the object are as follows:

  ×

  × 

(2)

The z coordinate is the easiest to calculate, since

it is merely the current height of the ulrtrasonic

sensor. Each time the sensor rises, we increase

the z coordinate value.

In order for our software to correctly and accurately

control and interpret the platform rotation and sensor

movement, it needs to know some measurements

from the scanner unit: how many degrees the motor

must rotate for a single platform rotation, distance

from the ultrasonic scanner to the center of the

platform, and the distance it raises the scanner

after every complete scan. Geometrical configurations

of 3D robotic scanner is listed in the Table 1.

Rather than directly measuring the distance from

the ultrasonic sensor to the center of the platform.

We used the sensor to measure the distance to an

346

www.dbpia.co.kr

논문 / UML기반의 창의 공학용 로봇 설계

그림 3. 코사인 법칙
Fig. 3. Law of Cosines

object with its edge on the center. The ultrasonic

sensor returned the specified value. It is better to

go with the ultrasonic sensor rather than the actual

measurement, since all our subsequent values will

come form the sensor. With these measurements

we can calculate everything else we need to know

in order for the scanner to give relatively accurate

readings.
[13,14,15].

In this paper, sometimes we know the x and y

coordinates and must calculate. In this case we

use inverse functions. If we know the length of

each side of a triangle then we can calculate the

angles by rearrange the equations slightly:

 angle - asin(Opposite/Hypotenuse) (3)

 angle = acos(Adjacent/Hypotenuse)

 angle = atan(Opposition/Adjacent)

Asin, acos, and atan are merely words for

inverse sine, inverse cosine, and inverse tangent.

There is one problem with atan - it can't calculate

angles greater than 90 degrees. However using

Math.atan2(x,y) we can calculate this accurately as

atan2() can produce any angle between 0 and 360

degrees.

During scanning, the 3D robotic scanner don't

have a right angled triangle. In this case, as long

as we know the lengths of all three sides of a

triangle, we could figure out the angles. This means

we can calculate the inner angle as illustrated by

Fig. 3.

The law of cosine applies to any triangle in

which the lengths of all three sides are known

     (4)

In this form, the equation isn't useful if we

want to calculate angle A, so we rearrange as

follows:

  


  
 (5)

3.3 Refactoring for 3D Robotic Scanning

We apply the refactoring method to 3D robotic

scanner for the purpose of improving the design

of existing program. Refactoring is a structured,

disciplined method to rewrite or restructure existing

code without changing its external behaviour, applying

small transformation steps combined with re-executing

tests each step. Continuously refactoring code is

another extreme programming(XP) practice and

applicable to all iterative methods. The essence of

refactoring is applying small behavior preserving

transformations at a time. After each transformation,

the unit tests are re-executed to prove that the

refactoring did not cause a regression. Therefore,

there's a relationship between refactoring and TDD

(Test Driven Development) - all those unit tests

support the refactoring process. Each refactoring is

small, but a series of transformations - each followed

by executing the unit tests again- can, of course,

produce a major refactoring of the code and design,

all the while ensuring the behavior remains the same.

Code that's been well-refactored is short, tight,

clear, and without duplication - it looks like the

work of a master programmer. Code that doesn't

have these qualities smells bad or has code smells.

In other words, there is a poor design. Code smells

is a metaphor in refactoring - they are hints that

something may be wrong in the code. it might

turn out to be alright and not need improvement.

That's in contrast to code stench - truly putrid

code crying out for clean up. The remedy to

smelly code are the refactorings.
[16,17].

Like patterns, refactorings have names, such as

Extract method, There are about 100 named

refactorings. The description of refactoring for the

3D robotic scanner is summarized in the Table 2.

Figure 4 illustrates the flow chart of 3D robotic

scanner.

347

www.dbpia.co.kr

한국통신학회논문지 '08-10 Vol. 33 No. 10

표 2. 리팩토링에 대한 상세
Table 2. The description of refactoring

Refactoring Description

 Extract Method
Transform a long method into

a shorter one

 Extract Constant
Replace a literal constant with

a constant variable

 Introduce Explaining

Variable

Put the result of the expression,

or parts of the expression.

 Replace Constructor Call

with Factory method

In Java, replace using the new

operator and constructor call

with invoking a helper method

그림 4. Flow chart of 3D robotic scanner
Fig. 4. 3D 로봇 스캐너 플로우 챠트

그림 5. 클래스 다이어그램 관계도
Fig. 5. Class diagram relationship

그림 6. 물체의 DPlot 스캐닝
Fig. 6. DPlot Scanning of the object

Ⅳ. 3D robotic Scanner Experiments

The purpose of UML method is primarily to

understand the 3D robotic scanner. From this viewpoint,

the purpose of doing UML is not to create many

detailed UML diagrams that are handed off to a

programmer, but rather to quickly expolre alternative

and the path to a good OO design.[18,19].

4.1 Agile Modeling for 3D Robotic Scanner

JVM supports the parameterized types which are

most commonly used for the element type of collection

classes, such as the elements of lists and maps. In

this paper, we used the parameter class which includes

the Driver_Speed, Steering_Speed, and Sensor_Threshold.

And therefore everything of the Robot, Driver,

Steering, and Sensor classes references the parameter

class. The instance of parameter class is transferred

to the start method of robot class for the purpose

of initializing the class.

Driver class includes the setParameter method

which specify the revolution speed of motor and

Forward method which move robot to the forward

direction. We summarize the class diagram of

relationship among Robot, Driver, Motor, steering

and Sensor class as illustrated by Fig. 5.
[20,21

4.2 Results of the 3D scanning

The ultrasonic sensor produces the measurements

in one centimeter increments, which prevents it from

picking up fine detail, and the field view of the

ultrasonic sensor is wide. If it had a narrower field

of view, small details in objects would be detectable.

And therefore, we can actually change the range

of the sensor from 255 centimeters to something

smaller and produce more accurate results. The

scanner program outputs a series of 3D coordinates

to the console screen. The results can be displayed

in a variety of ways. For example, Excel spreadsheet

is almost ubiquitous to all platform though, we

use the DPlot software for the purpose of highly-

grade displaying the images.
[22,23].

Figure 6. shows the image of 3D robotic scanner

of DPlot displaying the scan of an object. Dplot

trial version is www.dplot.com and Graphics download

348

www.dbpia.co.kr

논문 / UML기반의 창의 공학용 로봇 설계

is www.kylebank.com.

Ⅴ. Conclusions

In this paper, the 3D robotic scanning technique

and theory works on the basis of UML are

experimented. UML has become the universally

accepted language for software design blueprints.

UML is the visual language used to convey design

ideas throughout this paper, which emphasizes how

we really apply frequently used UML elements,

rather than obscure feature of the language. 3D

robotic scanner needs to integrate multiple sensor

to execute tasks such as pattern recognition, and

optimal image scanning.

We use the Java software that allows to program

the 3D robotic scanner, and we would improve

the performance of the 3D scanner with helping

the Java Integrated Development Environment(J-IDE)

which have the class, threads, arrays, floating point

numbers, recursion, and total control methods.

참 고 문 헌

[1] CRAIG LARMAN, APPLYING UML AND

PATTERNS 3rd, IE PRENTICE HALL, 2005.

[2] Brian Bagnall, Building Robots with Java Brains,

VARIANT PRESS. 2007.

[3] Watanabe, Software Design Technic. Cyber Pub.

2004.

[4] Ambler, S. The Unified Process-Elaboration Phase,

Lawrence,KA,:R&D Books, 2000

[5] Beck, K.. Pattern and Software Development. Dr.

Dobbs Journal. 2. 1994.

[6] Jason Gu, Max Meng, Al Cook, Peter X, Liu.

Sensor Fusion in Mobile Robot, Proceedings of

the 4th World Congress on Intelligent Control

and Automation, June 10-14, 2002.

[7] R. Gartshore, A. Aguado, C. Galambos. Incremental

Map Building using an Occupancy Grid for an

Autonomous Monocular robot, 7th nternational

Conference on Control, Automation, Robotics &

Vision. Dec, 2002. Robot, MIIT Press, 1991.

[8] W. Burgard, D. Fox & T. Schmidt, Estimating the

absolute position of a mobile robot using position

probability grids, in Proc of National Conference

on Artificial Intelligence, 1996.

[9] Coad, P. Objected-oriented Patterns. Communications

of the ACM. 9.1992

[10] Fowler, M. Draft patterns on object-relational

persistence services. 2001.

[11] CHRIS CANT, Writing Windows WDM Device

Drivers, 2001. R&D Books

[12] J. Michael Jacob, Industrial Control Electronics,

Prentice-Hall, 1989.

[13] Martin, R. Designing Object-oriented C++ Application

Using the Booch Method, Englewood Cliffs, NJ:

Prentice-Hall.

[14] Frank L. Lewis, Optimal Estimation, John Wiley

& Sons, 1986.

[15] Gordon McComb, Robot Builder's Bonanza, TAB

Books, 1987.

[16] Dave Prochnov, Mindstorms Hacker's Guide. McGraw

Hill, 2007.

[17] Benjamin Erwin, Creative Projects with Mindstorms.

Addison Wesley, 2001.

[18] Jim Leden, Embedded Control Systems in C/C++,

CMP Books, 2004.

[19] Fred G. Martin, Robotic Explorations, A Hand-On

Introduction to Engineering. 2001.

[20] An Introduction to ROBOT TECHNOLOGY, Philippe

Coiffet, 1982.

[21] Thomas, M. IT Projects Sinks or Swim. British

Computer Society Review. 2001.

[22] Rumbaugh,.J., et al. Object-Oriented Modelling and

Design. Englewood Cliffs. NJ: Prentice-Hall. 1991.

[23] Wirfs-Brock,.R., Wilkerson. Designing Object-Oriented

Software, Englewood Cliffs, NJ.: Prentice-Hall.

2002.

홍 선 학 (Hong Seon Hack) 정회원

1985년 광운대학교 전기공학과

학사졸업

1988년 광운대학교 전기공학과

석사졸업

1994년 광운대학교 대학원 박사

졸업

1992년~현재 서일대학 정보기술

 계열 부교수

<관심분야> 제어, 컴퓨터응용, 로봇분야 등>

349

www.dbpia.co.kr

	Creative Engineering Robot Design with UML
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Basic Theory
	Ⅲ. 3D Robotic Scanning
	Ⅳ. 3D robotic Scanner Experiments
	Ⅴ. Conclusions
	참고문헌

