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ABSTRACT

ABBA codes, a class of quasi-orthognal space-time block codes (QoSTBC) proposed by Tirkkonen and others, 

allow full rate and a fast maximum likelihood (ML) decoding, but do not have full diversity. In this paper, a 

linear complex precoder is proposed for ABBA codes to achieve full rate and full diversity. Moreover, the same 

diversity produce as that of orthogonal space-time block code with linear complex precoder (OSTBC-LCP) is 

achieved. Meanwhile, the size of the linear complex precoder can be reduced by half without affecting 

performance, which means the same complexity of decoding as that of the conventional ABBA code is 

guaranteed.    
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Ⅰ. Introduction 

Space-time block code design has recently 

attracted considerable attentions. One attractive 

approach of space-time block codes (STBC) is the 

orthogonal designs as proposed by Alamouti
[1], 

Tarokn, Jafarkhani and Calderbank[2]. The codes 

can achieve full diversity and have fast maximum 

likelihood (ML) decoding at the receiver. 

However, full-rate orthogonal STBC (OSTBC) for 

general quadrature amplitude modulation (QAM) 

does not exist when the number of transmit 

antennas is larger than two. 

Recently, ABBA codes
[3], a class of space-time 

block code from quasi-orthogonal designs, have 

been proposed by Tirkkonen et al., to increase the 

signal rate. With the quasi-orthogonal structure, 

the ML decoding at the receiver can be done by 

searching pairs of symbols. However, these codes 

do not have full diversity. The performance of 

these codes is better than OSTBC at low SNR, 

but worse at high SNR.

It is desired to have ABBA codes with full 

diversity to ensure good performance at high 

SNR. A quasi-orthogonal space time block code 

with signal constellation (SC-ABBA) in [4] 

achieve this goal by properly choosing the signal 

constellations. In this paper, we achieve this goal 

by properly design a linear complex precoder for 

ABBA codes. The resulting codes guarantee both 

full rate and full diversity. Moreover, they achieve 

the same diversity advantage defined in [2] as 

that of the orthogonal space-time block code 

design with a linear complex precoder 

(OSTBC-LCP) in [5]. Finally, the linear complex 

precoder (LCP) is simplified. Thus the decoding 

complexity is the same as that of the 

conventional ABBA codes.

Ⅱ. Linear Complex Precoder for ABBA 
Codes with Full Diversity

2.1 ABBA Codes
ABBA codes with full rate and partial diversity 
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for a system with four-transmit antennas were 

proposed in [3]. In that scheme, four symbols are 

arranged as follows:

        





 


 


 


 


 


 


 


 






           (1)

where the matrix has two copies of the × 

Alamouti block code with symbols and   on 

the block diagonal, and two copies of the 

Alamouti code with symbols   and   on the 

anti-diagonal block, ie. in the form 

                           (2)

The scheme is thus called “ABBA Codes”. 

For any pair of distinct transmitted matrices  

and , the difference matrix is ,
  

 . Then from (1), we have the property 

matrix 

               (3)

where


  




  and 


  







  . 

Hence, the determinant of (3) is given as



   

 
  



 

  



 


  (4) 

Note that (4) sometimes could be zero, for 

example when 
  , which means the 

space-time signals can not have the full diversity. 

Hence, it is desired to find a way to ensure the 

determinant is always nonzero.

2.2 A complex precoder for ABBA codes with 
full diversity 

A new linear complex precoder is proposed as 

follows:

 ∙





∙    (5)

which is a product of a diagonal matrix D and 

the unitary matrix  with a Vandermonde 

structure given as

 







 


 


⋯
 

⋯
 

⋮ ⋮

 


⋱ ⋮

⋯
 





           (6)

where    and  is the 

normalizing factor ensuring that .

Hence, the transmission matrix for the new 

ABBA codes with LCP (5) is changed into

 






 


 


 


 


 


 


 


 






        (7)

where  is the normalizing factor so that 

    and    
 . The 

determinant of the property matrix is given as 





   


 


 
∙   



 


 
   (8)

where   is the ith row vector of  and 

  ⋯  


.

Theorem: when     ,  can 

guaranntee the full diversity and achieve the same 

diversity product as that of OSTBC-LCP for a 

signal constellation drawn from a square lattice. 

Proof: if the determinant (8) is assumed to be 

zero, we have



 


⊔


 




From properties of the precoder (6), we observe 

that

  

   and     


  , 

thus

           

 











 



 
 



 








∙  

⇒









 




 








 




 








 

⇒


     (9)
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where 































. 

If 









 , belongs to a signal 

constellations drawn from a square lattice (4QAM, 

16QAM), 
  is equivalent to zero if and only 

if   is a zero vector [6], which means  . 

However, the result conflicts with the assumption 

that ≠. So 

≠

  
 . Similarly, 



≠

  
 . 

Now, angles   and     should be selected so 

that 









  are included by a signal 

constellation drawn from a square lattice. One of 

necessary condition is 

   

 



 ⇒    
     

 
⇒       

   (10)

and 

   

 



 ⇒    
      


⇒       

    (11)

Hence     .

Since     ±, the diversity product of 

the ABBA-LCP is given as follows:

  ≠




   


∓ 


 


∙   


± 


 


     (12)

where   is the number of transmit antennas and 

we define that 

    ∓ 
 
 

 


 ∓ 





± 

± 







 

   (13)

        

  ± 
 
 

 


 ±   





± 

± 







 

 (14)

where   ±  ± .

Therefore, 

≠ 









 




from [5], we know the diversity product of 

OSTBC-LCP is 

   

  


≠ 


  



 


  




≥ ≠
 



 


 

It is easy to observe that OSTBC-LCP and the 

proposed scheme have the same diversity product 

equations with different symbol vector notations, 

so both of them have the same diversity product. 

We also observe that the diversity product of 

OSTBC-LCP is greater than or equal to that of 

DSTBC-LCP [6], then the diversity product of the 

proposed code should be greater than or equal to 

that of DSTBC-LCP too. 

2.3 A simplified LCP for a fast ML decoding

From (13) and (14), we observe that 

≠ ≤≠ 








Equality exists when one of symbol pairs are 

zeros. It is possible to simplify the LCP (5) for 

the reduction of decoding complexity with 

negligible performance effect. Therefore, the LCP 

(5) is simplified as

     
 








 

 





 

 





 

 





 

 








       (15)

which can be looked as a shifted and punctured 

matrix from (5). 

If we define   ⋯, as the ith column of 

, from the property of ABBA codes it is 

easy to see that 

〈〉〈〉〈〉〈〉
where 〈〉

 




  is the inner product 

of vector   and . Therefore, the subspace 
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Fig. 1. BER performance Vs SNR for 4-QAM

created by   and   is orthogonal to the 

subspace created by   and  . For this 

orthogonality, the maximum-likelihood decision 

metric can be calculated as the sum of two terms

 [7], where   is a 

function of   and   and it is independent of   

and  . 

Similarly,   is another function of   and   

and independent of   and  . If the full-size 

LCP (5) is used, using two independent functions 

  and   is helpless to reduce the complexity 

of decoding because each transmitted symbol   

includes all original symbols  . But if the 

simplified LCP (15) is used, both   and   only 

include   and  , meanwhile   and   only 

include   and  . In other words, first the 

decoder finds the  that minimizes , 

in parallel, the decoder selects the pair  

which minimizes . So ABBA codes with 

LCP (15) not only achieve fulll diversity gain but 

also have the same decoding complexity as those 

of the conventional ABBA codes.  

Ⅲ. Simulation Results

The performance of ABBA codes with different 

linear complex precoders (LCP) is evaluated in 

this section via simulations. Four transmit and one 

receiver antenna are assumed. 4QAM and 16QAM 

constellations are considered. Demodulation is 

performed via maximum likelihood (ML) 

detection. For our simulation, the channel is 

assumed to be uncorrelated complex Gaussian 

with unit variance. It is constant across a 

space-time block code and changes independently 

from block to block. 

Fig.1 provides performance comparison for 

ABBA codes [3], SC-ABBA [4], DSTBC-LCP 

[6], OSTBC-LCP [5] and ABBA codes with 

different LCPs using 4QAM. Simulation results 

show that the performance of the proposed 

scheme is merged to that of OSTBC-LCP, which 

is coincident with our proof. Besides full-size 

LCP (5) and the simplified LCP (15) applied to 

ABBA codes achieve almost the same 

performance, which further prove our argument 

that using the simplified LCP has little effect on 

the performance.

Simulation results in Fig.1 also show that the 

performance of ABBA codes with LCP (5) or 

(15) is close to that of the conventional ABBA 

codes when the SNR is low. As the SNR 

increases, codes with full diversity work better 

and get more benefit from the SNR increase than 

partial diversity codes. Furthermore, the ABBA 

codes with LCP (5) and (15) outperform 

DSTBC-LCP not only in low SNR region but 

also in high SNR region, which is mainly due to 

the fact that the proposed scheme has larger 

diversity advantage. ABBA codes with LCP also 

improve performance gain compared to SC-ABBA. 

When only the (6) is used in ABBA codes, the 

performance is even worse than that of the 

conventional ABBA codes, which prove that the 

Vandermonde matrix can help OSTBC [5] to 

achieve full diversity gain but can not help 

ABBA codes.

Fig.2 provides simulation results of 

DSTBC-LCP, OSTBC-LCP and ABBA codes with 

LCP using 16QAM for 4 transmit and 1 receive 

antenna. We observe that ABBA codes with LCP 

are approximately 1.5dB better than DSTBC-LCP 

at BER   . Performance curves of OSTBC-LCP 

and ABBA codes with LCP are still merged and 

better than that of DSTBC-LCP.  
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Fig. 2. BER performance Vs SNR for 16-QAM

Ⅳ. Conclusion

In this paper, a linear complex precoder is 

designed for ABBA codes to achieve full 

diversity and full rate. The proposed scheme also 

achieves the same diversity products as that of 

OSTBC-LCP in [5]. Moreover, a simplified linear 

complex precoder is proposed to keep a fast 

maximum likelihood decoding with that same 

performance as that of the full-size complex 

precoder.    
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