
논문 09-34-03-03 한국통신학회논문지 '09-03 Vol. 34 No. 3

257

Training Method and Speaker Verification Measures for Recurrent 

Neural Network based Speaker Verification System

Tae-Hyung Kim*  Regular Member

ABSTRACT

This paper presents a training method for neural networks and the employment of MSE (mean scare error) 

values as the basis of a decision regarding the identity claim of a speaker in a recurrent neural networks based 

speaker verification system. Recurrent neural networks (RNNs) are employed to capture temporally dynamic 

characteristics of speech signal. In the process of supervised learning for RNNs, target outputs are automatically 

generated and the generated target outputs are made to represent the temporal variation of input speech sounds. 

To increase the capability of discriminating between the true speaker and an impostor, a discriminative training 

method for RNNs is presented. This paper shows the use and the effectiveness of the MSE value, which is 

obtained from the Euclidean distance between the target outputs and the outputs of networks for test speech 

sounds of a speaker, as the basis of speaker verification. In terms of equal error rates, results of experiments, 

which have been performed using the Korean speech database, show that the proposed speaker verification 

system exhibits better performance than a conventional hidden Markov model based speaker verification system.
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Ⅰ. Introduction

  The goal of speaker verification (SV) is to 

decide whether a given speech utterance has been 

pronounced by a claimed client or by an imposter. 

Automatic SV can be widely used in security and 

forensic applications. Based on the text to be 

spoken, applications of SV can be roughly grouped 

into text-dependent (TD) and text-independent (TI) 

cases[1]. In the TD case, it is required for the 

speaker to produce speech for the same text in 

both training and testing for the SV system, and 

the machine for SV knows the lexical content 

(keyword) of the utterance used for verification. 

The focus of this paper is on the TD speaker 

verification (TDSV) system using fixed-text. 

  TDSV involves detection of the valid keyword 

and extraction of the speaker-specific information 

from the input speech signal. In order to extract 

acoustic features for speaker recognition, current 

systems often use acoustic parameters that have 

been developed for the use in speech recognition. 

LPC (linear predictive coding) parameters (or LPC 

cepstra), which have fallen out of favor in 

automatic speech recognition because of their strong 

dependence on individual speaker characteristics, 

tend to be preferred in speaker recognition for this 

very reason
[2].

  The state-of-the-art TDSV models are based on 

a hidden Markov model (HMM), Gaussian 

mixture model (GMM), dynamic time warping 

(DTW), and Neural Networks (NNs), etc
[1-7]. 

DTW based approach is simpler and requires 

relatively little computational resources during the 

enrollment phase of SV system. It has been the 

basis of several commercial products
[2]. HMM 

based approaches have generally been found to be 

more accurate than the simpler DTW[3,6]. HMM 

based SV systems create a generative model for 

the utterance of each client and this generative 
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model is prone to overfitting. In other words, for 

TDSV of good performance, the HMM based SV 

system requires huge amounts of training data in 

the enrollment phase. In most cases obtaining 

abundant utterances of each user is restrained 

because of customer convenience. NNs can 

represent any distribution of inputs without 

complicated modeling methods
[8-9], and have been 

frequently used in classifying speech sounds into 

phonemes because they have a good ability for 

classification. NNs based TDSV systems have 

been found in [7,10-11]. In [10-11], vowels which 

are good to distinguish speakers are extracted and 

used for SV. Above mentioned NNs based 

methods need additional preprocessing (e.g., 

speech segmentation and phoneme recognition) for 

TDSV. Therefore, in some cases, a hybrid 

HMM-MLP SV algorithm has been used in 

TDSV, where HMM is used for speech 

segmentation and MLP networks use the 

segmented speech utterance for SV
[12-13]. In [12], 

HMM is used for generating the MLP networks’ 

inputs and target outputs that are needed in 

training for MLP networks; static characteristics of 

short-time intervals of a speech utterance are only 

considered and time-varying characteristics of the 

speech sounds are not considered.

  The speech is basically nonstationary for 

long-time intervals and the consideration of the 

dynamics changes between speech frames 

(short-time intervals of a speech utterance) 

improves the SV performance. Therefore, a 

segmental HMM has been used for representing 

segments of features and incorporating the concept 

of trajectories to describe the time-varying 

characteristics of different speech sounds
[14]. A 

recurrent neural network (RNN) can be seen as a 

nonlinear dynamic system, which may express 

both the static and dynamic features of the signal 

at hand
[9]. In additions, a RNN may express 

speech dynamics and duration just like a 

segmental HMM, and may capture individual 

differences in nonstationary speech segments. As a 

result, a recurrent time delay NN, which is a 

form of RNN, has been used for TDSV
[15]. But 

NNs of [15] have the structure that can accept 

only the isolated words utterance. It is difficult 

for NNs of [15] to accept the connected words 

utterance and the long-time-interval utterance at 

hand. That is, NNs of [15] need speech 

segmentation by HMM. 

  In this paper, a RNN based SV system is 

proposed. The proposed RNN based SV system 

accepts the connected words utterance and does not 

need additional preprocessing such as speech 

segmentation and phoneme recognition by the HMM 

module. Then, unlike hybrid HMM-MLP systems, 

the configuration of the proposed system is not so 

complicated. In addition, in the process of 

supervised training for RNN, the target outputs are 

automatically generated and the generated target 

outputs are made to represent the temporal variation 

of input speech sounds. To increase the capability of 

discriminating between the true speaker (customer) 

and an imposter, a discriminative training method 

between the true speaker and cohort speakers, whose 

voice characteristics are close to the true speaker’s 

voice characteristics and that are therefore 

representative of the population near the true 

speaker, is presented.

  In the verification phase, a SV system calculates a 

matching score between some speaker model and a 

speech utterance. The resulting score is compared to 

a given threshold, based on that the test speaker is 

accepted or rejected. Development of the most 

pertinent method for calculating the matching score 

will lead to the good performance of a SV system, 

and the estimation of the optimal threshold is often 

critical for a good performance of the system
[16]. A 

threshold is empirically determined so a trade off 

between false alarms (false acceptances) and miss 

detections (false rejections) is obtained. As a 

convenience for system comparison, the performance 

of SV systems is often measured in terms of equal 

error rates (EER), corresponding to the decision 

threshold in which the false rejection rate is equal 

to the false acceptance rate. EER is often 

approximated as half of the sum of the two error 

rates. Outputs of NNs trained by using a MSE 

(mean squared error) criterion approximate posterior 
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Fig. 1 The structure of a recurrent neural network

class probabilities[8]. Therefore, output values 

obtained from outputs of NNs may be used as the 

matching score. But, because NNs are trained by 

MSE criterion, using a MSE value as the matching 

score can show better performance than using other 

values in the RNN based SV system. This paper 

presents the use and effectiveness of MSE values 

as the matching score. 

  We have performed SV experiments using the 

Korean 4-connected-digits speech database. In 

terms of EER, the experimental results show that 

our NNs based SV system exhibits better 

performance than the conventional HMM based 

SV system in circumstances where the number of 

training data is few. In addition, we demonstrate 

the RNN’s ability for capturing temporally 

dynamic characteristics of input speech signal. this 

done through the comparison of experimental 

results for MLP (static NNs) or RNN (dynamic 

NNs) based SV systems. 

Ⅱ. Recurrent neural networks

  MLP networks or static NNs only have the 

static mapping capability, i.e. output is a function 

of current inputs only. The consideration of the 

dynamics changes between speech frames 

improves the SV performance. In NN literature, 

NNs with one or more feedback loops are 

referred to as recurrent networks
[9]. A RNN 

responds temporally to an externally applied input 

signal. The application of feedback enables 

recurrent networks to acquire state representations, 

which make them suitable devices for speech 

processing
[9]. The role of the feedback delay units 

is to provide the network with dynamic memory, 

so as to encode the information contained in the 

sequence of phonemes. We will build a RNN 

based TDSV system that encodes the dynamics 

changes between speech frames contained in the 

connected-digits speech. Fig. 1 shows the structure 

of an RNN used in this paper, where the RNN has 

M neuron nodes, receives the I-dimensional input 

vector )](),...,(),([)( 21 txtxtxt I=X , and emits the 

N-dimensional output vector )](),...,(),([)( 21 tststst N=Y . 

In addition, M>N, and the output of m-th neuron 

node is 

Mmts tnet
m

m ,,2,1  ),exp1/(1)( )( L=+= −α
.      (1)

In Eq. 1,   is a constant and

m
I

i imi
M

l lmlm biastxwtswtnet ++−= ∑∑ == 11
)()1()(  , (2)

where wml is the synaptic weight connecting l-th 

neuron node to m-th neuron node, wmi is the 

synaptic weight connecting i-th input node to m-th 

neuron node, and biasm is the bias applied to 

m-th neuron node. 

  For training RNNs, the RTRL (real-time 

recurrent learning) algorithm is used
[17]. The RTRL 

algorithm adjusts the synaptic weights of a fully 

connected recurrent network in real time, that is, 

while the network continues to perform its signal 

processing function. Through using the RTRL 

algorithm, the proposed RNN based SV system 

can continue to adapt to the gradual change of 

each individual speaker’s voice characteristics, 

while the system continues to perform SV 

functions for a long time.

Ⅲ. Neural networks based TDSV

  In this section, we describe the basic structure 

of a proposed TDSV system using NNs. In 

addition, the key methods used in the enrollment 

and the verification phases are represented.

3.1 Basic structure
  The components of the proposed RNNs based 

TDSV system are shown in Fig. 2. In the SV 
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Fig. 2 RNNs based speaker verification system

Fig. 3 The learning process of neural networks in the 
proposed TD speaker verification system

system of Fig. 2, RNNs, which compose the 

module for speaker models, can be replaced with 

MLP networks, if the BP (backpropagation) 

algorithm is used as the learning algorithm and the 

adaptation phase is removed. Feature extraction 

transforms the raw signal into a sequence of 

32-dimensional feature vectors, which consist of 

LPC-cepstrum (LPCC) coefficients and their deltas.

  In the enrollment phase, a speaker model is 

created by training an RNN (or an MLP network) 

through the learning process of this paper. If the 

module for speaker models is composed of MLP 

networks, the BP algorithm is used for training 

NNs. And if the model for speaker models is 

composed of RNNs, the RTRL algorithm is used 

for training NNs. These supervised learning 

algorithms
[9], such as BP and RTRL, need target 

outputs. The formation of target outputs, which 

are automatically generated, and the special 

features for the formation of target outputs 

sequence are described in section III.2. Fig. 3 

represents the learning process of NNs (RNNs or 

MLP networks). The learning process consists of 

two steps, from basic training to discriminative 

training. Each step of the learning process is 

explained in section III.3. The result of the 

learning process is a speaker model for each 

client. For each enrolled speaker, one speaker 

model, which is built of a trained NN, is stored 

in the system database. The dimension of the 

input vector )(tX  for a NN is 32=I  which is 

also the dimension of the feature vector of input 

speech. The number of the output neuron nodes 

of NNs is determined in accordance with the 

number and time-varying characteristics of 

phonemes contained in the pronounced sentence 

(the 4-connected-digits speech). More details are 

explained in section III.2.

  In the verification phase, a claimed client 

pronounces the keywords. Then the NN based 

speaker model for the claimed identity of the 

client is selected. The matching score is 

calculated from this selected NN’s outputs for the 

pronounced keywords. By the hard thresholding of 

the matching score, the TDSV system decides 

whether the claimed client pronounces exactly the 

keywords and whether to accept or reject the 

speaker. More details for calculation of the 

matching score are explained in section III.4.

  The adaptation phase can have a place, when 

the TDSV system is based on RNNs. After the 

verification phase, the adaptation phase trains 

RNNs for the speaker’s utterances which have 

passed the SV test. While the system continues to 

perform SV functions for a long time, the 

adaptation phase also continues to adapt to the 

gradual change of characteristics of each individual 

speaker’s voice that has passed the SV test.

3.2 The generation of sequence of target outputs
  In order to automatically generate target outputs 

of a NN for a speech utterance, the state 

transition model of Fig. 4 is used and models the 

transitions between speech frames. States and state 

transitions represent phones and the transitions 

between phones of any speech utterance. If the 

number of states of the state transition model is 

N, the number of output neuron nodes of the NN 

is N. In the state transition model of Fig. 4, if 
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Fig. 4 The state transition model for generating target 
outputs of a neural network

Fig. 5 An input speech signal and the sequence of target 
outputs of a neural network for the input

the number of states is N=3, the state transition 

probability matrix is determined as follows:
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where state transition probability qi,j=p(State j | 

State i) and π is a constant. Values of outputs of 

the NN for speech frame t are used as the state 

probabilities, qn=p(X(t) | State n), of the state 

transition model at speech frame t (where an 

uniform distribution of the probabilities of the 

phones, i.e. equal class probabilities, is assumed). 

If )](),...,(),([)( 21 tststst N=Y  is  output vector of the 

NN for speech frame t, state probabilities of the 

state transition model are determined as 

)]()(),...,()(),()([)( 2211 tstqtstqtstqt NN ====Z . For the 

input speech, )](),...,2(),1([ TXXXU = , that has a total 

of T speech frames, the sequence of outputs of 

the NN is generated as )](),...,2(),1([ TYYYO= , and 

the sequence of state probabilities is generated as 

)](),...,2(),1([ TZZZP = . From the sequence P and 

the state transition probability matrix of Eq. 3, 

the Viterbi algorithm produces the most likely 

sequence )](),...,2(),1([ Tnnn=Q  of states for the 

observed sequence )](),...,2(),1([ TXXXU= . The sequence 

Q can be used to divide the input speech into 

speech segments, and each segment consists of 

speech frames that have the same phone. That is, 

the input speech is segmented into phones by the 

sequence Q. The target outputs of the NN are 

determined by the sequence Q. The target outputs, 

G(t), of output neuron nodes of the NN for the 

speech frame t is determined as follows:

)](),(),...,(),([)( 121 tgtgtgtgt NN −=G ,          (4)

where ⎩
⎨
⎧

≠
=

=
ntn
ntn

tgn )(when ,0.0
)(when ,0.1

)(
.

In Eq. 4, n is the output neuron node index or 

the state index, and gn(t) is the target output of 

the output neuron node n. 

  When Eq. 4 is used to generate the target 

outputs of a NN for an observed sequence U, the 

sequence )](),...,2(),1([ TGGGC =  of the target outputs 

is formed as the lower part of Fig. 5. Target 

outputs are generated according to time-varying 

characteristics of the input speech sounds, shown 

in Fig. 5. When a NN is trained by using target 

outputs of Eq. 4, the sequence O of outputs of 

the NN for the input speech will reflect 

time-varying characteristics of the input speech 

sounds. 

  For an input speech, the updating of target 

outputs and the training of a NN are iteratively 

conducted. That is, shown in the left side (the basic 

training) of Fig. 3, the NN is iteratively trained by 

the target outputs which are iteratively updated by 

outputs of the NN that has been trained by the 

previous target outputs. Two processes of the NN 

training and the target outputs updating are 

executed alternatively and iteratively. Through this 

iterative training process, the input speech is more 

and more accurately segmented into phones by the 

sequence Q which is obtained from outputs of the 

NN and the Viterbi algorithm. In addition, through 

the iterative training process, the NN captures 

effectively time-varying characteristics of the input 

speech sounds, and the sequences O or C represent 

more accurately time-varying characteristics of the 

input speech sounds.
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Fig. 6 The basic training of a neural network for a 
speaker verifier

  When a NN is trained for a speech utterance of 

a speaker by using target outputs of Eq. 4, the 

sequence of outputs of the NNs for the speech 

utterance follows the pattern of the sequence C for 

the speech utterance. On the contrary, the sequence 

of outputs of the NNs for a speech utterance of 

another speaker does not follow the pattern of the 

sequence C for the speech utterance of another 

speaker. This provides an advantage for speaker 

verification. More description is provided in 

section 3.4.

3.3 The training procedure for neural networks 
in the enrollment phase

3.3.1 The initialization of NNs' weights 

and the basic training process

  The basic training shown in Fig. 3 is 

represented in more detail by Fig. 6. In the basic 

training process, a NN is trained for speech data 

of a true speaker. Before the iterative processes 

that rotate between the NN training and the target 

outputs updating, the initialization of the NN is 

performed. In the initialization of the NN, the 

speech input of the true speaker is segmented 

equally into N intervals, where N is the number 

of output neuron nodes of the NN and the value 

of N is determined to be three times as many as 

the number of syllables that are contained in the 

pronounced keywords for the TDSV. From this 

initial segmentation, the sequence Q (of N states) 

is obtained. Then target outputs are obtained by 

Eq. 4 according to this sequence Q. Finally, the 

initialization of the NN’s weights is performed by 

training the NN with the RTRL (or BP) algorithm 

and these target outputs. The iterative training 

process is performed for the NN, which has the 

initial synaptic weights obtained through the 

initialization of the NN.

3.3.2 The discriminative training process

  Typical state-of-the-art SV systems build 

background models from speaker independent 

databases[3,6]. Some studies advocate that the 

background model should be derived from 

speakers randomly selected from speaker 

independent databases[3]. Such a background is 

called world model. Others suggest to select 

speakers (cohort speakers) that are close to the 

customer. Those representatives of the population 

near the claimed speaker compose the cohort 

model
[18], which is expected to improve the 

selectivity of the system against voices similar to 

the customer. In this paper, to improve the 

selectivity of our system against voices similar to 

the customer, NNs are made to pass through the 

process of discriminative training between the true 

speaker data and the cohort speaker data, where 

the true speaker data are speech data of the 

customer and the cohort speaker data are speech 

data of cohort speakers whose voice characteristics 

are close to the customer’s voice characteristics.

  Our system needs the world speaker data that are 

speech data of speakers randomly selected from 

speaker independent databases. The world speaker 

data will contain the cohort speaker data with 

which a speaker verifier (speaker model) confuses 

the true speaker data. In the discriminative training 

process, the cohort speaker data are extracted from 

the world speaker data. To extract the cohort 

speaker data of a speaker model k, our system 

computes score values of the world speaker data. 

Score values are MSE values between target 

outputs (by Eq. 4) and outputs of the speaker 

model k for the world speaker data. Speech data, 

which finish in the top L in the score ranking of 

the world speaker data, become the cohort speaker 

data for the speaker model k, where L is the 

number of the cohort speaker data. Shown in the 

right side (the discriminative training) of Fig. 3, 

three processes (i.e. selection of the cohort speaker 
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data, update of target outputs, and update of the 

synaptic weights of a NN) are executed alternatively 

and iteratively. In the discriminative training for the 

speaker model k, target outputs for the true speaker 

data are determined by Eq. 4 and target outputs for 

the cohort speaker data are determined in contrast 

with the true speaker data. By using the above 

described method, we can obtain sequences Q for 

the cohort speaker data from the NN of the speaker 

model k. From the obtained sequences Q, a target 

output for each output neuron node of the NN of 

the speaker model k is determined as follows: for a 

speech frame t of the cohort speaker data,

⎩
⎨
⎧

≠
=

=
ntn
ntn

tgn )(when ,0.1
)(when ,0.0

)(
.       (5)

Then the sequence )](),...,2(),1([ Tllll GGGC =  of 

target outputs for the cohort speaker data is 

formed, where l is the index of the cohort speaker 

data and by Eq. 5, )](),(),...,(),([)( 121 tgtgtgtgt NNl −=G  

is determined. In addition, Cr is determined by 

Eq. 4, where r is the index of the true speaker 

data. By using Eqs. 4 and 5, target outputs are 

determined differently for the true and the cohort 

speaker data, and the discriminative training between 

the true and the cohort speaker data is performed by 

these target outputs. This discriminative training will 

make the NN of the speaker model k learn speech 

data with discrimination.

  The number of the true speaker data is 

different from the number of the cohort speaker 

data. This imbalance between the true and the 

cohort speaker data can make trouble in the 

discriminative training. To overcome an obstacle 

caused by this imbalance, the cost function dk of 

the RTRL algorithm (or BP algorithm) for the 

discriminative training of the speaker model k is 

defined as follows:

∑∑
==

+=
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r
rk
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l
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E
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11

)(
/
1)(

/
1 UU

,     (6)

where Ul is the l’th cohort speaker data, Ur is 

the r’th true speaker data, L is the number of the 

cohort speaker data, R is the number of the true 

speaker data, and RL > . In addition, Ek(Ul) is the 

MSE value between target outputs (by Eq. 5) and 

outputs of the speaker model k for the cohort 

speaker data l, and Ek(Ur) is the MSE value 

between target outputs (by Eq. 4) and outputs of 

the speaker model k for the true speaker data r. 

Moreover, Ek(Ur) is identical to the cost function 

of the basic training of the speaker model k for 

the true speaker data r. The MSE, Ek(Ur), is 

obtained as follows:

∑
=

=
T

t
rkrk teE

1
, )()(U

,             (7)

where ek,r(t) is mean squared error between target 

outputs and outputs of the NN of the speaker 

model k at the speech frame t of Ur. When target 

outputs and outputs of the NN of the speaker 

model k for Ur are Gr(t) and Yr(t) at the speech 

frame t, ek,r(t) is represented as follows: drop 

subscripts k and r for the brief sign of the 

numerical formula, without confusion,

( )∑
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Therefore, in the discriminative training, the 

adjustment, which is applied to the synaptic 

weight wij
k between the neuron nodes i and j of 

the NN of the speaker model k, is represented for 

a speech data Ua (where a is the index of speech 

data) as follows:
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In Eq. 10, the constant η is learning rate and the 

term 
k
ijak wE ∂∂ )(U  is computed through the RTRL 

algorithm (or BP algorithm). In addition, when 

ra UU = , Ek(Ua) is computed as Ek(Ur), and when 

ra UU ≠ , Ek(Ua) is computed as Ek(Ul).
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3.4 The matching score for speaker verification
  In the verification phase, for verifying the 

claimed identity of the client k or for detecting 

an imposter, the matching score is computed from 

outputs of the NN of the speaker model k for the 

pronounced keywords. The resulting score is 

compared to a given threshold. In cases of hybrid 

HMM-MLP or HMM based SV systems, a 

conventional method for calculating the matching 

score is to compute the likelihood score by using 

the forward algorithm or the Viterbi algorithm. 

Since our system has the state transition model of 

Fig. 4, our system can use a matching score 

computed from the Viterbi algorithm in the same 

way as HMM based systems. But, in this paper, 

the MSE values are used as the matching score. 

NNs are trained by the MSE criterion of Eqs. 7 

and 8. Such supervised training decreases the 

error of Eq. 8 between target outputs and outputs 

of a NN at each speech frame t. In addition, for 

true speaker data, such supervised training 

decreases the error between the sequences Cr and 

Or of the NN of the speaker model. Moreover, 

for the cohort speaker data, the discriminative 

training uses the target outputs obtained by Eq. 5. 

Therefore, for the speech utterance of an 

imposter, such discriminative training increases the 

error between the sequences C (by Eq. 4) and Ol 

of the speaker model of the client that the 

imposter impersonates. Shown in the MSE 

criterion of Eqs. 7 and 8, the training for NNs is 

performed on all the output neuron nodes of 

NNs. The value of the MSE of Eq. 7 contains 

information obtained from all the output neuron 

nodes of a NN at each speech frame, and 

impartially reflects information from each output 

neuron node. On the contrary, the matching score 

computed by the Viterbi algorithm (this paper will 

call this score the Viterbi score) contains 

information obtained from only one node of 

output neuron nodes of a NN at each speech 

frame (i.e., the maximum likelihood path is 

used
[19]), and the use of matching score obtained 

by the forward algorithm incurs unexpected 

danger of deterioration of the SV performance in 

our SV system (our system uses very simple state 

transition model. More detailed and complex 

transition models may lead to much better 

results). Most of all, because NNs are trained by 

the MSE criterion of Eqs. 7 and 8, using MSE 

values as the matching score will show good SV 

performance. Therefore, as the matching score, 

our system uses the MSE score, Escore, defined as 

follows:

∑
=

=
T

t
akakSCORE te

T
E

1
,, )(1)(U

,         (10)

where ESCORE,k(Ua) is the MSE score of a test 

data Ua for a speaker model k. In addition, when 

target outputs and outputs of the NN of the 

speaker model k for the test data Ua are Ga(t) 

and Ya(t) (where Ga(t) is obtained by Eq. 4) at 

the speech frame t, ek,a(t) is represented as 
2

, )()()/1()( ttNte aaak YG −=  by using Eq. 8. In this 

paper, through the SV experiments, the MSE 

score (by Eq. 10) and the Viterbi score are 

compared in terms of EER.

Ⅳ. Experiments and results

  A HMM based SV system, a MLP network 

based SV system, and a RNN based SV system 

are compared in terms of the SV performance 

(EER).

4.1 Test database
  Speech database for the TDSV test contains the 

Korean 4-connected-digit-words speech[20]. Speech 

data was recorded in a soundproof room with 

HMD224X and KAY CSL 4300B was used in 

A/D conversion. In addition, speech data was 

sampled in 16 kHz and quantized in 16 bits. For 

the true speaker data, speech data of ten male 

and ten female speakers are used. The imposters 

for the SV test are composed of ten male and 

ten female speakers. For the world speaker data, 

speech data of 17 male and 11 female speakers 

are used. The number of the cohort speaker data 

extracted from the world speaker data is nine for 

each speaker model. Three utterances out of four 
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Speaker models

EER

The Viterbi score 

or likelihodd score

The MSE 

score

MLP networks 6.87% 4.20%

RNNs 14.76% 1.05%

HMMs (with segmental 

K-means algorithm)
1.92% N/A

Table 1. EER (equal error rate) of each TDSV system.

utterances of each speaker are used in the training 

phase, and one utterance out of four utterances of 

each speaker is used in the test phase. Speech 

utterances of speakers are downsampled in 8 kHz 

and endpoints of speech are detected automatically 

using energy of signal. All utterances are 

pre-emphasized with a factor of 0.97. A 

Hamming window with 32ms window length and 

16ms window shift is used for each speech 

frame. Feature vectors (32-dimensional vector) of 

speech are extracted into 16 LPCC coefficients 

and their deltas.

4.2 The configuration of neural networks and 
HMM

  MLP networks of the MLP networks based SV 

system have 32 input neuron nodes, one hidden 

layer having 20 hidden neuron nodes, and 12 

output neuron nodes. The MLP network of each 

speaker model is initialized by the initialization 

method of Fig. 6 (by 50 iterations). Then the 

MLP network is trained by the basic training 

process during 400 iterations. Finally, the MLP 

network is trained by the discriminative training 

process during 400 iterations. The learning rate is 

fixed as η = 0.7 for all the training processes.

  For the HMM based SV system, the whole 

word model in HMM is used. For segmentation 

of speech, HMM models with the segmental 

K-means algorithm are used. In the case of the 

HMM based SV system, only the likelihood score 

can be used as the matching score and the HMM 

system cannot use the MSE score.

  RNNs of the RNN based SV system have 14 

neuron nodes and 32 input neuron nodes. Twelve 

neuron nodes out of 14 neuron nodes are output 

neuron nodes. That is, in Fig. 1, M = 14, N = 

12, and I = 32. The RNN of each speaker model 

is initialized by the initialization method of Fig. 6 

(by 200 iterations) with the learning rate η = 

0.03. Then the RNN is trained by the basic 

training process with η = 0.07 during 200 

iterations. Finally, the RNN is trained by the 

discriminative training process with η = 0.07 

during 200 iterations.

4.3 The experimental results
  Only after the basic training process, the 

performance of systems is compared in terms of 

EER, and after the basic and discriminative training 

processes of NNs, the performance is also 

compared in terms of EER. In Table 1, only after 

the basic training process, the performance of each 

TDSV system is represented in terms of EER. In 

the HMM based SV systems of Table 1, the 

method used for segmentation of speech is 

represented in parentheses. In NNs based SV 

systems, the performance of the MSE score is 

compared with the performance of the Viterbi 

score. The MSE score shows better performance 

than the Viterbi score in terms of EER. When MLP 

networks and RNNs are compared, RNNs show 

better performance than MLP networks, because of 

dynamic properties of RNNs. In addition, the RNN 

based system with the MSE score shows better 

performance than HMM based systems with the 

likelihood score. In Table 2, the performance of NNs 

based systems, which have the basic and 

discriminative training processes, is compared with the 

performance of NNs based systems which have only 

the basic training process. Table 2 shows the effect of 

the discriminative training. The discriminative training 

gives more improved performance to NNs based SV 

systems which use the MSE score as the matching 

score. But the discriminative training deteriorates 

the performance of NNs based systems which use 

the Viterbi score as the matching score. We can 

find out the reason of these phenomena from Fig. 

7. Fig 7 represents the output value of each output 

node of a NN for a frame of input speech. In Fig. 

7, after only the basic training process, output 
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Fig. 7 Output values of output nodes of a neural network 
for a speech frame

Speaker 
models

Only Basic 
training

Basic and 
discriminative training

Viterbi 
score

MSE 
score

Viterbi 
score

MSE 
score

MLP networks 6.87% 4.20% 11.74% 1.45%

RNNs 14.76% 1.05% 15.14% 0.66%

Table 2. EER of neural networks based TDSV systems.

values of output nodes of a NN for a frame of 

input speech are plotted by using square markers 

on the n-sn coordinate plane, where n is the index 

of output nodes of the NN and sn is the output 

value of the output node n. After the basic and the 

discriminative training processes, circular markers 

represent output values of output nodes of the NN 

for the frame of input speech. In Fig. 7, the more 

the value of MSE (between target outputs and 

outputs of the NN for the true speaker data) is 

decreased, the more output values of the NN tend 

to be plotted toward the graph of the solid line, 

rather than the graph of the dotted line. In addition, 

the MSE score is computed by using output values 

of all the output nodes of a NN for each frame of 

input speech. On the contrary, the Viterbi score is 

computed by using the output value of one output 

node which generates the maximum output value at 

each frame of input speech. Therefore, output 

values represented by the graph of the dotted line 

produce good results in NNs based TDSV systems 

with the Viterbi score, and output values 

represented by the graph of the solid line produce 

good results in NNs based TDSV systems with the 

MSE score. That is, because NNs are trained by 

MSE criterion decreasing the value of MSE, using 

the MSE score as the matching score can show 

better performance than using the Viterbi score in 

NNs based TDSV systems. The better the 

performance by using the MSE score becomes, the 

more the performance by using the Viterbi score is 

deteriorated. Shown in Tables 1 and 2, the 

proposed RNN based TDSV systems show better 

performance than HMM based TDSV systems, 

especially in circumstances of having few training 

data for the true speaker.

Ⅴ. Conclusion

  This paper proposed a RNN based TDSV 

system using MSE score. The training methods 

for RNN of the system were presented. In 

addition, for making a decision regarding the 

identity claim of a speaker, the MSE score was 

presented as the matching score. In both of the 

enrollment and verification phases, the target outputs 

were automatically generated both for the training 

of NNs and for the calculation of the MSE score, 

and the sequence of the generated target outputs 

represented time-varying characteristics of input 

speech sounds. These target outputs played an 

important role in the improvement of the TDSV 

performance. RNNs were employed to capture 

temporally dynamic characteristics of speech signal, 

and the virtue of the employed RNNs was shown 

through experiments for comparing RNNs with 

MLP networks. In NNs based TDSV systems, the 

proposed MSE score showed better performance 

than the Viterbi score in terms of EER. The 

proposed discriminative training gave more improved 

selectivity (against similar voices with customers) 

and performance to NNs based TDSV systems. In 

circumstances of having few voice data for 

customers, proposed RNN based TDSV systems 

showed better performance than conventional HMM 

based systems in terms of EER.
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