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Multiplexing in Wireless Communications
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ABSTRACT

In this paper, we propose a new power loading algorithm for orthogonalized spatial multiplexing (OSM) 

systems over flat-fading multiple-input multiple-output (MIMO) channels. Compared to SVD-based transmission 

scheme, the OSM scheme exhibits a good system performance with lower complexity and feedback overhead. To 

further improve the performance in OSM systems with power loading, we introduce a geometric approach on the 

Euclidean distance between the constellation points in the effective channel. Using this approach, we show that 

the optimal power loading parameters in terms of the minimum distance can be obtained. Simulation results 

demonstrate that our algorithm provides a 5dB gain at a bit error rate (BER) of    over that of no power 

loading case with both QPSK and 16-QAM. Consequently, our power loading algorithm allows us to 

significantly improve the system performance with one additional feedback value.
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Ⅰ. Introduction

Communication over multiple-input multiple-output 

(MIMO) channels has been the subject of intense 

research over the past several years, because the 

MIMO channel can offer much greater diversity 

gain and higher spatial multiplexing gain over their 

single-input single-output (SISO) counterpart
[1][2][3]. 

Normally, two approaches have been considered to 

exploit many advantages of the MIMO channels. 

One is space-time coding that aims at maximizing 

diversity gain
[4][5][6], and the other is spatial 

multiplexing which focuses on increasing the 

channel throughput
[7][8][9].

If the communication environment is slowly 

time varying, the availability of channel state 

information (CSI) at the transmitter is possible via 

feedback or the reciprocal principle when time 

division duplex (TDD) is used. Many studies on 

such closed-loop MIMO systems have been based 

on singular value decomposition (SVD) of the 

channel transfer matrix
[10][11]. However a drawback 

of precoding systems with the SVD is that the 

SVD operation requires high computational 

complexity and feedback overhead
[12]. To reduce 

the feedback amount, a transmitter with limited 

feedback information was studied to utilize the 

system resources more efficiently
[13][14].

Recently, orthogonalized spatial multiplexing 

(OSM) has been proposed, which achieves 

orthogonality between transmitted symbols by 

applying phase rotation at the transmitter
[15][16]. 

The OSM scheme can be applied to a system 

with more than two transmit antennas, which 

transmits two streams of data at the same time. 

Compared to SVD-based transmission scheme, the 

OSM scheme exhibits a good system performance 

with lower complexity and feedback overhead.

One of salient features of the OSM scheme, is 

that transmitted data symbols experience the same 
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channel quality. This may lead to an incorrect 

conclusion that the power loading would not 

improve the OSM performance. However, this is 

not the case since each component of the 

transmitted symbol still has different channel gains. 

Recognizing this issue, we propose a power 

loading scheme for OSM systems, which allocates 

the optimal power to each component instead of 

symbols. The proposed scheme requires one 

additional feedback value. To determine the 

optimal power level, we consider a criterion based 

on the Euclidean distance between the constellation 

points in the effective channel, since the minimum 

Euclidean distance accounts for the symbol error 

probability. We achieve reasonable receiver 

complexity from the proposed geometric approach. 

In the simulation section, we compare the 

performance of the proposed power loading for 

OSM systems with that of conventional OSM 

systems. The results show that our algorithm 

obtains a 5dB gain over no power loading case at 

a bit error rate (BER) of  with both QPSK 

and 16-QAM. Optimality of our proposed solution 

is confirmed by comparing with the exhaustive 

search results.

The remainder of this paper is organized as 

follows: Section Ⅱ presents the system model and 

reviews the OSM system. In Section Ⅲ, we 

propose a new power loading algorithm for OSM 

systems and a geometric approach for the 

criterion. In Section Ⅳ, simulation results are 

presented comparing the proposed scheme with 

OSM systems without power loading. Section Ⅴ 

gives the conclusions of this paper.

Ⅱ. System Descriptions

In this section, we consider a spatial 

multiplexing (SM) system with  transmit and 

  receive antennas in a frequency flat fading 

channel. Throughout this paper, normal letters 

represent scalar quantities, boldface letters indicate 

vectors and boldface uppercase letters designate 

matrices. With a bar accounting for complex 

variables, for any complex notation  , we denote 

the real and imaginary part of   by  and 

, respectively.

We consider the complex channel output as

                 (1)

where ∈×  is the complex transmitted 

signal, ∈ ×  indicates the complex received 

signal, and ∈ ×  represents the complex 

channel matrix with the   th element denoting 

the fading coefficient between the th transmit 

and the th receive antenna. We assume that the 

elements of the MIMO channel matrix   are 

obtained from an independent and identically 

distributed (i.i.d) complex Gaussian distribution. 

Each channel realization is assumed to be known 

at the receiver. Also, we assume that 

∼ 
   is the zero-mean circularly 

symmetric complex Gaussian noise, where   

denotes an identity matrix of size  .

In what follows, we give a brief review on the 

orthogonalized spatial multiplexing (OSM) scheme 

in [15][16]. We focus on a system transmitting 

two independent data streams. The OSM 

orthogonalizes a channel by applying a rotation 

precoder. Thus the joint ML detector reduces to a 

single symbol decodable receiver, which greatly 

decreases the detection complexity.

To orthogonalize the channel, the OSM 

precodes two transmitted symbols as

  


  
 





where   is the rotation phase angle applied to 

the second antenna and 

 



 
  



  



















Employing the above precoding, equation (1) 

can be rewritten as

         (2) 
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where   accounts for the effective channel 

matrix for  , represented by





  
 





Equivalently, the real-valued representation of 

the system (2) is given as [15][16]







 
 









 


 







 
  








 
 






  
 

 
 

                  (3)

where the real column vector 
  of length 

  denotes the th column of the effective 

real-valued channel matrix  ,   represents 

   and   indicates 

  


.

From the real-valued representation of the 

channel matrix in (3), it is easy to see that the 

column vectors 
  and 

  are orthogonal to 
  

and 
 , respectively (

⊥
  and 

⊥
), 

regardless of  . We also notice that 


 ∙

 
 ∙

  for all  , where ∙ 

denotes the inner (dot) product between vectors  

and . In this case,   becomes orthogonal if 

and only if 
⊥

  and 
⊥

  

(
 ∙

  
 ∙

  ).

Denoting  as the   th entry of  , the 

rotation angle for the orthogonality between 
  

and 
  (or 

  and 
) can be written as[15][16]

  
 ± 



where ∑ 
 ∠

 ∠
  

and  ∑ 
 ∠
∠
 . This 

rotation angle makes symbols orthogonal to each 

other.

Utilizing this orthogonality, the ML estimate of 

transmitted symbol 
 and 

 can be obtained 

as[15][16] 

 ∈∥     




∥   (4)

and

 ∈∥     




∥   (5)

where  is a signal constellation of size .

As a result, the complexity of the ML 

estimation of the OSM reduces from 
 to . 

Compared to SVD-based transmission schemes, 

the OSM has lower complexity and feedback 

overhead[15][16].

Ⅲ. Power Loading Algorithm for OSM

First we discuss about the necessity of power 

loading for OSM systems. From equations (4) and 

(5), a solution for an OSM system is transformed 

into two single-input single-output (SISO) systems. 

In general, componentwise power loading for 

SISO systems does not improve the system 

performance, since real and imaginary parts of a 

transmitted symbol have the same channel gain 

and are orthogonal to each other. However the 

SISO equations (4) and (5) is different from the 

conventional SISO systems.

Note that 
 , 

 , 
  and 

  are the channel 

gains of the components within two transmitted 

symbols. It was shown in [15][16] that the 

subspace spanned by 
  and 

  is orthogonal to 

that spanned by 
  and 

  with the OSM 

precoding. It is easy to see that ∥∥∥∥, 

∥∥∥∥ and 
 ∙

 
∙

 . From this 

observation, it appears that power loading is not 

necessary for the OSM scheme. However the 

column vectors 
  and 

  are not orthogonal to 


  and 

 , respectively. Also, ∥∥∥∥ is 

not equal to ∥∥∥∥. As a result, the 

channel energy corresponding to the inphase and 

quadrature components is still different.
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그림 1. OSM을 위한 전력 할당 시스템 구조도
Fig. 1. Schematic diagram of transmitter structure for 
OSM systems with power loading

Motivated by this observation, we present a 

componentwise power loading algorithm for OSM 

systems. For the optimum ML receiver, 

performance depends on the minimum Euclidean 

distance in the received signal constellation, 

denoted by 
[17]. Thus, we focus on maximizing 

  by means of a geometric approach.

Define the power loading matrix and the power 

loading parameter as  and , respectively. We 

also denote   as  . We assume that the 

total transmit power is constrained to be 

  which equals to 

   if  . Then, the 

received signal in (3) can be rewritten as 



where    . Fig. 1 depicts the 

structure of the power allocation for OSM 

systems.

Let us denote the first and second column 

vector of  as 
  

  and 
  

 , 

respectively. Since two SISO equations (4) and 

(5) have the same expression within one OSM 

system, our analysis is carried out on only one 

SISO equation. From now on, we refer to 


  


  as the effective channel matrix with 

power loading. Then ML equation (4) can be 

rewritten as

 ∈∥     




∥  (6)

To maximize  , we present a power loading 

algorithm with the following criteria

  ≤≤      (7)

where    is the minimum distance as . 

The optimal power loading parameter  in (7) 

is dependent on modulation levels. For the 

remainder of this section, we present the analysis 

results on QPSK and 16-QAM constellations. We 

first start with a theorem to introduce a geometric 

analysis.

Theorem 3.1 : Let   be an arbitrary 

integer number. We assume a triangle with side 

lengths ,  and ′ . Assuming that ,  and 

′ represent the opposite angle of ,  and ′ , 
respectively, where  is an acute angle, we have 

 ≤ 
 .

proof : Denote   as the radius of a 

circumcircle of the above triangle. Then, we have 

   and   . Since 

  , it follows 

  
≤ 

 .

For QPSK constellations, we assume that the 

real or imaginary part of the transmitted symbol 

has its value ±. From the ML equation (6), 

the constellations points in the effective channel 

are  
 ,  

 ,  
  

and  
 . Then, the criteria of (7) can 

be rewritten as 

  ≤≤ ∥ ∥∥ ∥ ∥  ∥∥  ∥(8)

In what follows, we present an efficient way to 

determine  which guarantees a better 

performance by maximizing   based on the 

geometric approach. Define the angle between 
  

and 
  as .. If  is an acute angle, 

∥  ∥ cannot be minimum. Thus 
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그림 2. QPSK에서의   접근을 위한 삼각형 모델

Fig. 2. Triangle model for geometric approach on   

for QPSK

∥  ∥ can be neglected in (8). Each side 

of triangle   in Fig. 2 shows the candidate 

for  . Since the analysis for acute angles and 

obtuse angles is symmetric, we only consider the 

case of an acute angle in this paper. By changing 

 with  , the obtuse angle case yields 

the same result.

For the analysis of QPSK,  is classified into 

the following two cases.

1) ≤  ≤ ≤  ≤ 

We first show that ∥  ∥ can never be 

the shortest side of the triangle  . If we 

assume that ∥  ∥ is the shortest side,  

should be the smallest angle inside the triangle. 

This means that  and  are larger than  

(   ≥ ,    ≥ ), which contradicts 

the triangle.

From this observation, we can simplify the 

problem as   ∥ ∥∥ ∥ . As 

can be guessed from Fig. 2, this equation can be 

rewritten as

   ∥
 ∥     ≤ ∥ ∥     

 

where  is obtained as ∥ ∥∥ ∥ for 

  . Since ∥ ∥ is a monotonically 

increasing function of  and ∥ ∥ is a 

monotonically decreasing function of , we have 

   . The closed form solution 

for  is given in case 1 in Appendix A.

2) 

≤≤  ≤ 

It can be shown in Fig. 2 that   can be 

obtained as

  










∥ ∥     ≤ ∥  ∥     ≤ ∥ ∥     

  (9)

where  and  are defined as 

∥ ∥∥  ∥ for    and 

∥ ∥∥  ∥ for   .

By taking the second derivative of 

∥  ∥ in terms of , we can verify that 

∥  ∥ is a convex-down function of . 

Also ∥ ∥ is a monotonically increasing 

function of  and ∥ ∥ is a monotonically 

decreasing function of . From the preceding 

description and the criteria (7), the optimum 

power loading parameter  can be either  or 

, where  and  can be obtained from case 

2 and case 3 in the Appendix, respectively. 

Inserting  and  obtained from the Appendix 

into (9) yields

  













∥∥∥∥

∥∥
    





∥∥∥∥

∥∥
    

From the above equation, we can compute  

as

      ∥∥∥∥
   ∥∥∥∥

Note that we do not need to calculate both  

and .

Next, we consider the 16-QAM case. For 

16-QAM constellations, we assume that the real 

or imaginary part of the transmitted symbol has 

its value ±±. Then, the candidates of 

  are as follows: ∥ ∥, ∥ ∥, 
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그림 3. 16QAM에서   접근을 위한 삼각형 모델

Fig. 3. Triangle model for geometric approach on   

for 16QAM

∥  ∥, ∥  ∥, ∥  ∥, 

∥  ∥, ∥  ∥, ∥  ∥, 

∥  ∥, ∥  ∥, ∥  ∥, 

∥  ∥, ∥  ∥, ∥  ∥, 

∥  ∥,∥  ∥. Similar to 

QPSK, we only analyze the case of an acute 

angle. In this assumption, ∥ ∥ is smaller than 

∥  ∥, ∥  ∥, ∥  ∥, 

∥  ∥, ∥  ∥, ∥  ∥ 

or ∥  ∥, regardless of .

We analyze the case of ∥∥≤∥∥ only, 

since the solution for ∥∥∥∥ can be 

obtained symmetrically. From the QPSK analysis, 

we can notice that if ∥∥≤∥∥, we have 

∥ ∥≤∥ ∥ for   , and vice versa. In 

other words, the inequality between ∥∥ and 

∥∥ remains unchanged after the optimal power 

loading. Then, the following inequalities hold:

∥ ∥≤∥ ∥, 

∥  ∥≤∥  ∥, 

∥  ∥≤∥  ∥, 

∥  ∥≤∥  ∥ for   . 

Consequently, we have the search candidates for 

computing   as

  ≤≤ ∥ ∥∥  ∥ ∥  ∥∥  ∥(10)

where lines  ,  ,   and   in Fig. 3, 

which correspond to each candidate. Since 

simulation results show that ∥  ∥ is 

not critical, we will not consider ∥  ∥.

For the analysis of 16-QAM,  is classified 

into the following three cases.

1) ≤  ≤ ≤  ≤ 

For this range of , from Theorem 3.1, the 

length of   cannot be twice the length of   

in the triangle  . Note that the lengths of 

  and   are continuous functions of . 

Using these results, we notice that length of   

cannot be equal that of  . Since the above 

statement holds for all possible , we can simply 

check the case of    which results in 

∥  ∥≤∥ ∥. Thus, we conclude that 

∥  ∥ is always greater than ∥ ∥ for 

all possible . Similar to this, ∥  ∥ is 

always greater than ∥ ∥ for all possible . 

As a result, we only need to compare ∥ ∥ 

and ∥  ∥ in (10). Since the candidates 

∥ ∥ and ∥  ∥ are the same as the 

QPSK case for ∥ ∥≤∥ ∥, we omit the 

analysis.

2) ≤      ≤ 

Similar to the above case, ∥  ∥ are 

greater than ∥ ∥, regardless of . Thus, the 

candidates of   in (10) reduce to ∥ ∥, 

∥  ∥ and ∥  ∥. By examining 

Fig. 3,   can be written as 

  










∥ ∥     ≤ ∥  ∥     ≤ ∥  ∥     ≤ 

where  and  are obtained as 
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Mod Case 

QPSK
≤≤ 

≤ 

16-

QAM

≤≤ 

≤ 

≤
   ∥∥≤∥∥ ∥∥
   ∥∥≤∥∥

≤
   ∥∥≤∥∥ ∥∥
   ∥∥≤∥∥

≤
   ∥∥≤∥∥ ∥∥
   ∥∥≤∥∥ ∥∥
   ∥∥≤∥∥

≤
   ∥∥≤∥∥ ∥∥
   ∥∥≤∥∥

≤ 

표 1. ∥∥≤∥∥일 때 최적의 전력 할당 계수 
Table 1. Optimal Power Lodaing Parameter   for 

∥∥≤∥∥

∥ ∥∥  ∥ for    and 

∥  ∥∥  ∥ for   . There 

are two solutions for ∥ ∥∥  ∥. 

After analyzing the geometric relation, it can be 

shown that the smaller one should be chosen as .

Since ∥ ∥ is a monotonically increasing 

function of  and ∥  ∥, ∥  ∥ 

are convex-down functions,  is either ,  or 

, where  and  can be calculated from case 

4 and case 3 in the Appendix, respectively. The 

condition on which value should be selected among 

,  and  can be determined by analyzing the 

geometry, and the result is listed in Table 1.

3) ≤      ≤ 

Similar to the analysis presented above,   is 

given as 

  









∥ ∥     ≤ ∥  ∥     ≤ ∥  ∥     ≤ ∥  ∥     ≤ 

where  and  are obtained as 

∥ ∥∥  ∥ for  and 

∥  ∥∥  ∥ for . Between 

two solutions for the equation 

∥ ∥∥  ∥, it can be shown that 

the smaller one is 

Similar to the case of ≤   ,  

is either , ,  or , where  and  can 

be calculated from case 4 and case 3 of the 

Appendix, respectively. The condition on  and 

 is presented in Table 1.

Table 1 depicts the conditions to choose the 

optimum power loading parameters   for 

∥∥≤∥∥. For the case of 

∥∥∥∥, we obtain   by swapping 

∥∥ and ∥∥. Then  is computed as 

 . Note that  is omitted in the table, 

since  is available only when ∥∥∥∥. 

Also Table 1 depicts the closed form expression 

of  .

Ⅳ. Simulation Results

In this section, we provide simulation results to 

demonstrate the effectiveness of the proposed 

power loading for OSM systems, and compare 

with the conventional OSM systems without 

power loading. 

In Fig. 4, we compare the bit-error-rate (BER) 

performance of various systems. For our Monte 

Carlo simulations, we assume that the elements of 

the MIMO channel matrix   are obtained from 

an i.i.d. complex Gaussian distribution with mean 

 and variance . For both QPSK and 16-QAM 

constellations presented in Fig. 4, we can see that 

our power loading algorithm provides a 5dB gain 

at a BER of  over that of no power loading 

case. It should be noted that our power loading 

method needs one additional feedback value . 

In order to demonstrate the optimality of the 

presented power loading, the exhaustive search 

result is also plotted. Out of  possible power 

loading parameters ∈ , the best one 
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그림 4. QPSK와 16QAM에서 비트에러율
Fig. 4. BER performance of the spatial multiplexing 
schemes with QPSK and 16-QAM

which maximizes  , is applied to the 

exhaustive simulation result. The best one means 

that it maximizes  . Comparing the exhaustive 

search result with the proposed algorithm, we 

confirm that the power loading is optimal in 

terms of  .

Ⅴ. Conclusion

In this paper, we have presented a power 

loading algorithm for the OSM scheme in MIMO 

systems, which gives a good performance 

improvement with one additional real value for 

feedback information. Because of the feature of 

OSM systems, our algorithm performs 

componentwise power loading as opposed to 

symbolwise allocation. To determine the power 

loading parameter, we have illustrated a geometric 

approach on the minimum Euclidean distance 

between the constellation points in the effective 

channel in OSM systems. Our algorithm 

maximizes the minimum Euclidean distance to 

enhance the system performance. The simulation 

results confirm that the proposed algorithm for 

OSM is quite effective and is optimal in terms of 

 . It is straightforward to extend the proposed 

algorithm to higher level modulations.

Appendix

In this Appendix, we compute  which satisfies 

∥  ∥ ∥  ∥, where , , 

 and  denote integer numbers. We start with 

the following equation

∥ ∥ ∥ ∥
It follows that

∥∥ ∥∥ ∥∥ ∥∥
          ∥∥

       ∥∥∥∥
For the solution of the above equation, we 

consider the following 4 cases.

case 1 :           

 


∥∥ ∥∥
∥∥

case 2 :  

  ∥∥ ∥∥
 ∥∥

case 3 :  

  ∥∥ ∥∥
∥∥

case 4 : ≠  ≠ 

 





where   ∥∥  ∥∥ 
  ∥∥∥∥∥∥∥∥
× 

,   ∥∥ ∥∥
∥∥ ∥∥ ∥∥ ∥∥ 
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 


 ∥∥ ∥∥

  ∥∥
 



 ∥∥ ∥∥

  ∥∥

 





∥∥ ∥∥ ∥∥∥∥
  ∥∥∥∥
  ∥∥∥∥ ∥∥
  ∥∥∥∥
  ∥∥

 


 ∥∥ ∥∥

  ∥∥

 





∥∥ ∥∥ ∥∥∥∥
  ∥∥∥∥
  ∥∥∥∥ ∥∥
  ∥∥∥∥
  ∥∥

 


 ∥∥ ∥∥

  ∥∥

표 2. 의 계산값

Table 2. The Closed Form Expression of 

×∥∥ and   

×∥∥. Another solution 





 

is neglected, since this solution is larger than the 

other one.
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