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패킷 도착률과 토큰 생성률의 통합 관리를 적용한 

대기모형의 분석
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Arrival and Token Rates
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요   약

다양한 통신 서비스가 개발되면서, 네트워크 설계자들은 시간상관성, 폭주성, 예측 불가능한 트래픽의 통계적 

변동성 때문에 발생하는 혼잡을 제어하기 위한 방안을 모색하여 왔다. 본 논문에서는 패킷 도착률과 토큰 생성률

을 통합하여 관리하는 리키버킷 방식을 이용하여 네트워크의 혼잡을 예방하는 모형에 대하여 분석한다. 본 논문에

서 다루는 모형에서는 패킷 도착률과 토큰 생성 시간간격을 대기중인 패킷수에 따라 제어함으로써 네트워크 혼잡

을 예방하게 된다. 모형의 분석을 위하여 임베디드 마코프체인과 부가변수 기법을 사용하며, 대기중인 패킷수 확

률분포, 패킷손실확률, 평균대기시간 등의 특성치를 구한다.

Key Words : Arrival Rate, Leaky Bucket, Queueing Analysis, Telecommunication Networks, Traffic Control

ABSTRACT

As the diverse telecommunication services have been developed, network designers need to prevent 

congestion which may be caused by properties of timecorrelation and burstiness, and unpredictable statistical 

fluctuation of traffic streams. This paper considers the leaky bucket scheme with combined control of arrival 

and token rates, in which the arrival rate and the token generation interval are controlled according to the 

queue length. By using the embedded Markov chain and the supplementary variable methods, we obtain the 

queue length distribution as well as the loss probability and the mean waiting time.
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Ⅰ. Introduction

Queueing models have been widely studied for 

traffic control to support various traffic streams and 

to prevent congestion in telecommunication net-

works such as Asynchronous Transfer Mode 

(ATM)
[1,2]. ATM networks support diverse traffics 

with different service characteristics such as voice, 

data and video. These traffics are statistically 

multiplexed and transmitted in very high speed. 

Unpredictable statistical fluctuation of traffic streams 

may cause congestion. An appropriate traffic control 

is required to prevent congestion and to gain 

bandwidth efficiency in ATM networks. Overload 

control is representative control scheme to prevent 

congestion. Some researchers have studied the 

control schemes by regulating service rates
[3-5], 

others have studied the control schemes by 
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regulating arrival rates[6,7]. 

In this paper, combining two research streams, we 

consider the leaky bucket scheme with combined 

control of arrival and token rates. Almost all 

previous works have a static token generation 

interval and arrival rate. In our paper, the arrival 

rate and token generation interval are jointly 

controlled according to queue length. In other words, 

we place thresholds  and  ≥   on the 

buffer. According to whether the queue length 

exceeds the threshold  or not, the arrival rate is 

controlled. Furthermore, if the queue length exceeds 

the threshold  , the token generation interval also 

is controlled.

The cells (packets) arrive according to Poisson 

processes, and they are stored in buffer with finite 

capacity   if no tokens are available. The token 

pool has a finite capacity , so that the newly 

generated tokens are discarded when the token pool 

is full. Tokens are generated at every constant times 

 or . Each token allows a single cell to be 

transmitted, and the token following a transmission 

is removed from the token pool.

The arrival rate and the token generation interval 

are changed at only token generation instants. If the 

queue length () at token generation instant 

exceeds the threshold   (i.e.,  ≥ ), the 

arrivals follow a Poisson process with rate  . 

Otherwise, the arrivals follow another Poisson 

process with rate  . Nevertheless, if the queue 

length exceeds upper threshold  , that is if 

 ≥ , the token generation interval is given by 

 . Otherwise, the token generation interval is 

 ≥ . By using the embedded Markov chain 

and the supplementary variable methods, we obtain 

the queue length distribution as well as the loss 

probability and the mean waiting time.

Ⅱ. Analysis

2.1 System state distribution at token gener-
ation instants 

Our model is analyzed by the embedded Markov 

chain method and the supplementary variable 

method. We first consider the system state 

distribution at time points just after the token 

generation instants.

Let  ≥   be the n-th token generation 

epoch with    . We also introduce the notations:

 = the number of cells in buffer at time   ,

 = the number of tokens in token pool at time   .

Since the arriving cells wait in buffer only if 

there is no token, we express the state of buffer and 

token pool as follows:

 ≡  .

That is, if there are      tokens in 

token pool (  ), then     . Also, if 

there are       cells in buffer 

(  ), then     . Finally, the process 

 ≥  forms a Markov chain with finite state 

space ⋯  .

To obtain the system state distribution at token 

generation epochs, we need to know the number of 

cell arrivals during the token generation intervals 

  or  . Thus, we introduce the following 

probabilities:

1

1

1

Pr{  cell arrivals by  during }
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!

r

r
n r

n
Tr

a n T

T e r
n

λ

λ

λ −

=

= =

2 2

2
2 2

2 2

Pr{  cell arrivals by  during }

( )
    

!
.

n

n
T

b n T

T
e

n
λ

λ

λ −

=

=

And let 

2 2,   1, 2,           r r
k n k n

n k n k

a a r b b
∞ ∞

= =

= = =∑ ∑
.

Then, the one-step transition probability matrix   

of the Markov chain  ≥  is given by  
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Define the stationary probability distribution of 

the Markov chain  ≥  as

  lim
→∞
     ⋯.

Then, the stationary probability distribution 

  ⋯     for the system state at 

token generation epochs is given by solving the 

equations

,      1,      (1,1, ,1) .TP e eπ π π= = =

2.2 System state distribution at arbitrary 
instants

In this section we derive the system state 

distribution at an arbitrary time. Let  indicate 

the system state at time  , and define the stationary 

probabilities

lim Pr{ ( ) },      0 .n t
y N t n n M K

→∞
= = ≤ ≤ +

Then, the   is derived by using the 

supplementary variable method. We use the 

remaining token generation interval   and the 

elapsed token generation interval T as 

supplementary variables. We also introduce the 

notation

1

2

1 if the token at time  is generated by the interval ,
( )

2 if the token at time  is generated by the interval .

t T
t

t T
ξ =

⎧
⎨
⎩

We furthermore define the joint probability 

distribution of the system state and the remaining 

token generation interval at an arbitrary time   as

   lim
→∞
    ≤, 

 

and the Laplace transform of  

*
, ,0

( ) ( ) .sx
n r n rs e x dxα α

∞ −= ∫
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To know the system state distribution at an 

arbitrary time, we must know the number of arrivals 

during the elapsed token generation interval. So, 

define the joint probability    as

r

3 2

ˆ( , ) lim Pr{  arrivals by  during ,  ( ) , },    1, 2,

ˆ( , ) lim Pr{  arrivals by  during ,  ( ) 1, },   0.

r t

t

n x dx n T t r x T x dx r

n x dx n T t x T x dx n

β λ ξ

β λ ξ
→∞

→∞

= = < ≤ + =

= = < ≤ + ≥

We also define the Laplace transform 
   

of   :

*

0
( , ) ( , ) .sx

r rn s e n x dxβ β
∞ −= ∫

Conditioning the system state at last token 

generation epoch before time , 
   satisfies the 

following equations:

For  ≤   ,
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mean token generation interval. As shown in 

Appendix, 
   is given as follows:
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Finally, substituting 
   (  ) into 

above equations, we obtain the following results:

For  ≤   ,
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Thus, by using the system state distribution at an 

arbitrary time, we obtain the following performance 

measures:

(a) The loss probability for an arbitrary arriving 

cell: loss M KP y += .

(b) The mean queue length: 

( )
M K

i
i M

M i M y
+

=

= −∑
.

(c) By Little's law, we obtain the mean waiting 

time in the system: 

1 2( )(1 )loss

M
W

Pλ λ
=

+ − .

Ⅲ. Conclusion 

In this paper we analyzed a queueing model with 

combined control of arrival and token rates. The 

arrival rate of cells (or packets) and the time interval 

of token generation were jointly controlled to 

support QoS (Quality of Service) of traffic and to 

prevent congestion. The results of the paper can be 

applied for preventive congestion control in 

telecommunication networks such as ATM and next 

generation mobile systems. 
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Appendix

Suppose that the tokens are generated by the 

interval   and the arrivals occur by the rate  . 

Let   and T be the remaining and the elapsed 

token generation intervals respectively. Since the 

token generation interval   is finite and we 

consider a random point in this interval, we obtain

( )1
1 1
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TsT sTstE e e dt e sT

T
− −−= = −⎡ ⎤⎣ ⎦ ∫

From the definition of 
   and above 

equation, we can derive the following with 

      :
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By coefficient comparison, we have
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By similar method, we obtain
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