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ABSTRACT

As the diverse telecommunication services have been developed, network designers need to prevent
congestion which may be caused by properties of timecorrelation and burstiness, and unpredictable statistical
fluctuation of traffic streams. This paper considers the leaky bucket scheme with combined control of arrival
and token rates, in which the arrival rate and the token generation interval are controlled according to the
queue length. By using the embedded Markov chain and the supplementary variable methods, we obtain the

queue length distribution as well as the loss probability and the mean waiting time.

I. Introduction

Queueing models have been widely studied for
traffic control to support various traffic streams and
to prevent congestion in telecommunication net-
works Transfer Mode
(ATM)""?. ATM networks support diverse traffics
with different service characteristics such as voice,

such as Asynchronous

data and video. These traffics are statistically

multiplexed and transmitted in very high speed.
Unpredictable statistical fluctuation of traffic streams
may cause congestion. An appropriate traffic control
is required to prevent congestion and to gain
bandwidth efficiency in ATM networks. Overload
control is representative control scheme to prevent

the
[3-51
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congestion. Some researchers have studied

control schemes by regulating service rates

others have studied the control schemes by
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regulating arrival rates'®”.

In this paper, combining two research streams, we
consider the leaky bucket scheme with combined
control of arrival and token rates. Almost all
previous works have a static token generation
interval and arrival rate. In our paper, the arrival
rate and token generation interval are jointly
controlled according to queue length. In other words,
we place thresholds Z, and ZL,(> L,) on the
buffer. According to whether the queue length
exceeds the threshold Z, or not, the arrival rate is
controlled. Furthermore, if the queue length exceeds
the threshold L, the token generation interval also
is controlled.

The cells (packets) arrive according to Poisson
processes, and they are stored in buffer with finite
capacity A if no tokens are available. The token
pool has a finite capacity M, so that the newly
generated tokens are discarded when the token pool
is full. Tokens are generated at every constant times
T, or T,. Each token allows a single cell to be
transmitted, and the token following a transmission
is removed from the token pool.

The arrival rate and the token generation interval
are changed at only token generation instants. If the
queue length (Q(t)) at token generation instant
exceeds the threshold L, (ie., Q(t) > L,), the
arrivals follow a Poisson process with rate A,.
Otherwise, the arrivals follow another Poisson
process with rate A;. Nevertheless, if the queue
length exceeds upper threshold L., that is if
Q(t) = L,, the token generation interval is given by
T,. Otherwise, the token generation interval is
T, (= T,). By using the embedded Markov chain

and the supplementary variable methods, we obtain
the queue length distribution as well as the loss
probability and the mean waiting time.

II. Analysis

2.1 System state distribution at token gener-
ation instants
Our model is analyzed by the embedded Markov

896

chain method and the supplementary variable
method. We first consider the system state
distribution at time points just after the token
generation instants.

Let ¢, (n>1) be the nth token generation

epoch with ¢, = 0. We also introduce the notations:

B, = the number of cells in buffer at time ¢, +,

T, = the number of tokens in token pool at time ¢, +.
Since the arriving cells wait in buffer only if
there is no token, we express the state of buffer and

token pool as follows:
]vn = B’!l +M7 ];l'

That is, if there are i (0 <i< M) tokens in
token pool (B, =0), then NV, = M—1i. Also, if
there are i(0<i<KA—1) cells in buffer
(7, =0), then NV, = M+ i. Finally, the process

n

{NV,,n =0} forms a Markov chain with finite state

space {0,1,---, M+ K—1}.

To obtain the system state distribution at token
generation epochs, we need to know the number of
cell arrivals during the token generation intervals

Ty or T,. Thus, we introduce the following

probabilities:

a, =Pr{n cell arrivals by 4_during 7}}

_AL)

| 5 }":1,2,
n.

b’ = Pr{n cell arrivals by A, during 7, }

= —MZTZ ) e "k,
bl =2.b,
n=k .

Then, the one-step transition probability matrix P
of the Markov chain {]Vn, n = 0} is given by
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1 1 1 1 1
a,ta;  a, Aer, Iegs
1 1 1
ay a Aer-1 e
1 1 1

0 ay Ayer-2 Wer-1

0 0 al1 a;

0 0 ag a;

0 0 0 ag
P=

0 o - 0 0

0 o - 0 0

0 o - 0 0

0 o - 0 0

0 o - 0 0

Define the stationary probability distribution of
the Markov chain {N,L s n= 0} as

T, = limPr{N, =k}, k=0,1,---, M+ K—1.

n—co

Then, the

™= (7r0,7r1,---,7rM+ K 1) for the system state at

stationary ~ probability distribution

token generation epochs is given by solving the

equations

xP=n, me=1, e=(L1---1)".
2.2 System state distribution at arbitrary
instants
In this section we derive the system state
distribution at an arbitrary time. Let /V (t) indicate
the system state at time ¢, and define the stationary

probabilities

y,=limPr{N({)=n}, 0<n<M+K.

1 1 1 _1
AreL, ALy +1 Ak Ay
1 1 1 _1
ALyt Omar, Ayik-2 Qi1
1 1 1 1
Arry-2 Fmary-1 Ayk-3 Ak
1 1 4! ;‘
K-Lj+1
Ly-L+1 Ly-Lj+2 k-1, 1
2 2 2 —2
Ly-L Ly-L;+1 K-L-1  ak-L
2 2 &2 —2
Ly-1-1 -1 K-L;-2  QK-1,-1
2 2 2 -2
a a, k-1, 9Kyl
2 -
2 2
by b, k-L,-1  bk-1,
2 2 -
0 b
0 K—Ly-2 bK*LZ’]
5 —
0 0 ‘e b b
, —
0 0 .. by b

Then, the 1y, is derived by wusing the

supplementary variable method. We wuse the

remaining token generation interval 7 and the

elapsed  token  generation  interval T  as
supplementary variables. We also introduce the

notation

L
c0=1,

We furthermore define the joint probability

if the token at time ¢ is generated by the interval 7,

if the token at time ¢ is generated by the interval 7,.

distribution of the system state and the remaining

token generation interval at an arbitrary time ¢ as

@, , (z)dz = limPr{N(t) =n,l(t)=r,z < T< a:erx},

t— oo

r=1,2,

and the Laplace transform of «,, , (z)

@ (s) = j: e o (x)dx.

n,r
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To know the system state distribution at an
arbitrary time, we must know the number of arrivals
during the elapsed token generation interval. So,
define the joint probability [, (n,z)dz as

B, (n,x)dx =limPr{n arrivals by A during T, &t)=rx< T<x +dx}, r=12,
15

Sy (n,x)dx =lim Pr{n arrivals by 4, during T, ) =lLx< 7 <x+dx}, n=0.

We also define the Laplace transform ﬂ: (n,s)

of Br(n,x):

B (n,s)= '[: e B.(n,x)dx.

Conditioning the system state at last token
generation epoch before time ¢, «,, T(s) satisfies the

following equations:

For 0 < n< M+ K,

min{n,M+L,~1}

) 7 [mintnarenn |
an.\(‘y):?‘: z X f (n—k,s) + Z x.fs ("_kvs)lmz,wm B

k=0 k=M+L,

OREEEED YRV XTSI

k=ML,

where

E ZM+L -1

mean token generation interval. As shown in

M+K-1
Z x. T, s the
k=2

n=M+L,

Appendix, ﬁf (n,s) is given as follows:

B (n,s) =

ﬂl*(n,s):%|:2a R . (s)—-e¢""R! (s)}
ﬂ;(n,s):Tl[Zb R, (s)—e =T B2 (S)j|
gh
1

Za Rn (8)—e AT'R (s)}

where
R(s)=(s=4) " {-4(s=2)"}"
r=12.

898

Finally, substituting /6’7* (n,s) (r=1,2,3) into
above equations, we obtain the following results:
For 0 < n< M+ K,

¥, =a,,(0)+a,,(0)
LT q mntngsston ot | mintr ML) ok,
=—|— x, 91— a’}Jr— x,i1-> a l”>
E{ﬂ, g;. k{ ; ! 4 k:;Jq k{ /z:(; I} M)
1 < ko
- Z % {I_Zb[ lsz‘L:: ’

A ki, 1=0

and

M+K-1

Yk =1- z Yy

n=0

Thus, by using the system state distribution at an
arbitrary time, we obtain the following performance
measures:

(a) The loss probability for an arbitrary arriving

cell: })Ioss = yM+K
(b) The mean queue length:

M+K

M =3 (i-M)y,

(c) By Little’s law, we obtain the mean waiting

time in the system:
_ M
(ﬂl + /12 )(1 - 1)103,?)

II. Conclusion

In this paper we analyzed a queueing model with
combined control of arrival and token rates. The
arrival rate of cells (or packets) and the time interval
of token generation were jointly controlled to
support QoS (Quality of Service) of traffic and to
prevent congestion. The results of the paper can be
applied for preventive congestion control in
telecommunication networks such as ATM and next

generation mobile systems.
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Appendix

Suppose that the tokens are generated by the

interval 77 and the arrivals occur by the rate A;.

Let 7and T

token generation intervals respectively. Since the

be the remaining and the elapsed

token generation interval 77 is finite and we

consider a random point in this interval, we obtain
—sT, —st 1 —-sT;
EI:e ‘:|=I e —dtz(l—e ‘)/ST
0 T 1
1

. .. *
From the definition of [, (n,s) and above

equation, we can derive

R (2)=(z—1)\:

the following with

iﬂr(n,s)z" _ E[e—xﬁen,(z)ﬁ]

n=0
— et |:€7(\+R,<z))r] :|

1 ; » _
:Fl[eR‘( e T'j|(s+Rl(z)) !

= %|:i Z”: aR  (s)- Zw: iR (s):| z",
n=0

1 Ln=0 k=0

where R,}(s) =(s— )\1)71{)\1()\1 — 5)71}".

By coefficient comparison, we have

B (n,s) = %{Zn: R (s)—e "R (S):|

1

By similar method, we obtain

B (n,s) = HZ bR (s)—e "R’ (s)}

2 L k=0

. 1 n
B (n,s) = ;[Z @R (s)—e "R} (s)}
1 k=0

b

where

RI(s$)=(s=4) " {44 -9}
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