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A Study on the Complex-Channel Blind Equalization
Using ITL Algorithms
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ABSTRACT

For complex channel blind equalization, this study presents the performance and characteristics of two
complex blind information theoretic learning algorithms (ITL) which are based on minimization of Euclidian
distance (ED) between probability density functions compared to constant modulus algorithm which is based on
mean squared error (MSE) criterion. The complex-valued ED algorithm employing constant modulus error and
the complex-valued ED algorithm using a self-generated symbol set are analyzed to have the fact that the cost
function of the latter forces the output signal to have correct symbol values and compensate amplitude and
phase distortion simultaneously without any phase compensation process. Simulation results through MSE

convergence and constellation comparison for severely distorted complex channels show significantly enhanced

performance of symbol-point concentration with no phase rotation.
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I. Introduction

Broadcasting system, multipoint networks and the
wireless/mobile networks usually employ blind
equalization techniques to mitigate multipath fading
and inter-symbol interference (ISI) because they do
not require a training sequence to start up or to
restart after a communications breakdown ™. Most
blind equalization algorithms utilize nonlinearity of
the equalizer output for weights updates. Constant
modulus algorithm (CMA) minimizes the error
between output power and source signal constant
modulus based on mean squared error (MSE)
criterion"".

Unlike the MSE criterion, information theoretic
learning (ITL) methods

are based on a combination of a nonparametric

introduced by Princepe'

probability density function (PDF) estimator and a
procedure to compute information potential (IP). The
study in [5] demonstrated that the error samples of

the ITL -trained systems exhibit a more concentrated
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density function and the distribution of the produced
outputs are also closer to that of the desired signals
compared to MSE. As one of the ITL criteria, the
Euclidian distance (ED) between two PDFs that
contains only quadratic terms to utilize the tools of
information potential was applied successfully to the
biomedical classification problem[6] and real-valued
blind equalization!”.

In some applications, however, signals are complex-
valued and processing is done in complex multi-
dimensional space such as QAM signal space. Then
some concealed problems in real signal processing
such as symbol-phase rotation are exposed and left
as important problems to be solved.

This study analyzes and presents the performance
of two complex blind equalizer algorithms based on
ITL especially in complex channel environments that
cause ISI and phase rotation to symbol space. The
first ITL based algorithm deals with constant
modulus error (CME), and the second one is a
complex-valued ITL algorithm based on a self-
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generated symbol set which is an extension of the
real-valued ITL algorithmm.

II. CMA based on MSE Criterion

For the equalizer output y, and source signal
constant modulus R,, the CME is defined as

~R, )

2
Ccye = |yk|

Then the cost function p an © be minimized is

Foyu :E[(‘yk‘z _Rz)z] @)

where R, = Elld,|']/Elld,*] and d,is the transmitted
symbol at time k.

With weight vector ycomposed of L weights
and input vector X, =z, 2,_,,-n2,_;.,)7, the
output at symbol time k can be produced as
y, = W7X,. To adjust the blind equalizer
coefficients, we derive the following algorithmm by
differentiating p an with respect to W, employing
steepest descent method, and dropping the

expectation operation.
x 2
Win =Wo=2p00 X s ‘(‘J’k‘ -R) 3

Employing M-ary PAM signaling systems, the

level value A, takes the following discrete values
A =2m-1-M, m=12,..M 4)
Then the constant modulus R, becomes

RZ = E[‘Am 4]/E[‘Am‘2] &)

In the following section III and IV, we propose
two complex blind equalizer algorithms based on
ITL. The first one deals with constant modulus error
and ITL method. And the other one that will be

introduced in section IV is based on a self-generated

symbol set and ITL.

. Complex-valued Blind Equalization
based on ED Minimization and CME

In supervised ED criterion, we minimize the Eu-

clidian distance S0, 6(9)]:f (F(0—5(0) 2 de
between the error signal PDF fy(¢) and Dirac-delta
function 8(o)-

Rewriting ED between the two PDFs as

EDLfy(e),5(e)]= [ f2(£)ds+[ 5 (£)dé
-2[ f(§)3(&)dé (©)

where the term J. [z (§)d in (6) is defined as
information potential [P, for error signal[s], we

obtain

ED[fr(e),0(e)]=1F, +c =21, (0) (D

The term ,[ 5*(§)dg in (6) can be treated as a

constant € and (7) can be reduced to the following

cost function for supervised learning.
ED[f:(e),6(e)]=1F, =2f,(E=0) (8

Now we can expand this concept to constant

modulus error, then the cost function gy QE for

CME tries to create a concentration of constant

modulus error samples near zero.
ED = 1Py — 2 fp(ecps = 0) €)

For convenience sake, fj(€., =0) in (9) will
be referred to as PE in this section.
In order to calculate the error PDF f(€qy;)

. . 1
non-parametrically, we need the Parzen estimator’
using Gaussian kernel and a block of N error

samples as follows
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1 N

Seleeys) = NZ G, (ecur — €cuz;)
i=1

5, - (10)

—Ccyp;) 1

zii 1 exp[_( CME
NS o\2x 2072

2
Using (10) and Ccme =w/ =R, we obtain the

terms in (9) as

1P = [ @4 =3 3G, (v =) 1)
PE—i 3 12
- (12)

i=1

By differentiating g , - with respect to W, we

obtain the following gradient:

OEDqys _ e
IPeye Re IPeye Jm
ow (13)

_Z(VPE,Re + jVPEA,Im)

where subscripts Re and Im indicate real part and
imaginary part of a complex number .

(yiz—\g,\z)]

=1 =l —4o

\4 Py Re —

2
_‘yz‘ )'[yz,Re 'Xz,Re+y1,1m ’Xz,lm (14)

- (y[,Re : Xi,Re+ yi,lm : Xi,lm )]

\Y% iiexp 7‘%‘ )]
1Py Im 2N2 3\/7 pre _ U

2
_‘yl‘ ).[yl,lm .Xl,Re _y/,Re .XI,Im (15)

=i Kige™ Vire  Xitm)]

X Re i,Jm R
Z (yl +y; )]

-20° (16)

'(yx'z,Re +yz%lm “R) Wige Kiget Vitm  Xim)

PERe —

162

iexp[(yiRe + yilm - RZ )]
-20"? (17)

PEIm —

'(yiz,Re +yr%lm _R2)'(yi,lm X Re_yi,Re ‘X[,Im)

Replacing index I with time index K —i+1, we
can update the weights of the complex blind
equalizer (we will call this MED-CME in this
paper).

OED i

18
oW (18)

Wen =W tvep-cue

IV. Complex-valued Blind Equalization
based on ED Minimization and A
Self-Generated Symbol Set

The Euclidian distance between the transmitted
symbol PDF f, and the equalizer output PDF f, can
be expressed as

ED[f}, fy1=1P, +IP, =2-1P,,. (19)

where 1Py =J-f[)(§)fy(§)d§. The term IP, can be

treated as a constant. For /Py the receiver generates
16 constellation symbol points ;=d; Re T m
which are equally likely as

The real and imaginary parts of the transmitted
16 QAM symbols are generated. Now the terms IP,
and IP,, in (19) are expressed non-parametrically

using the Parzen window method as

N

1 N
L3360, @

i=l I=1

1 N N
:FZZGM(CL—%). @1

i=l [=1

For equalizer weight update W,.,=W,, -

. OEDIfyfy]
CMED1 aw

can be obtained as follows:

, the complex valued gradient
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OEDUfi) _y
oW 1Py Re [Py, Im )

-2V PyyRe T A% IPDy,Im)

L (yi,Re _yl,Re)2 + (yi,lm _yl,Im)2
> expl ]

=1 i=1 ~40?
TWire =Vire) (Kipe=Xire) @3)
+ (yi,lm - y],lm) : (Xl,lm - Xi,lm )]

1

L (yi,Re _yl,Re)2 + (yi,lm _yl,Im)2
D2 expl : ]
=1 =1 —4o0

: [(yi,hn - yl,lm) : (XI,RC_ Xi,Rc) (24)

+ (yi,Re - yl,Re) : (XI,Im —Xim )]

i

v o1
1Pyy ,Re 4N263\/;

S (di,Re _yl,Re)2 + (di,lm _yl,lm)2

> > expl ; ]

1=l =l —4o

: [(di,Re - yl,Re) : (X[,Re - Xi,Re) (25)

+ (di,lm - yl,Im) : (Xl,Im_ Xi,Im)]

i

v, oo
et AN?6
L (di,Re _yl,Re)2 + (di,lm _yl,Im)2
2.2 expl 2 ]
I=1 i=l —4o
: [(di,lm - yl,lm) : (XI,RC_ Xi,Rc) (26)

+ (di,Rc - yl,Rc) : (Xl,lm - Xi,Im)]

For convenience sake, this method shall be

referred to here as complex valued minimum ED 1

Table 1. Desired symbol assignment

i T M | 7ia+l 92 | M2+l 0% | 3h7a. 77
dig | +3 | +1 —1 —3
dim | +3 | +1 —1 -3

(CMED1) algorithm.

To investigate the robustness of the proposed
algorithm CMEDI1 to channel phase distortions over
CMA, we rewrite the term IP,, as a set of
partitioned functions. Considering 16 QAM sig-
naling, as used in our simulation in section V, the
set of outputs y, can be partitioned according to the
transmitted symbol set into 16 subsets as

p=-3-1+143

RY) ={y. 4 =p+jg}f
Wi, 4, = p+ jq} for =3 LALe3

Then the information potential IP,,, in (21) can be
expressed as

Py = 3G s(+j-y)+ 2.G s(1-j-y)

+... (28)
+ 3G 5(-343j-y)+ 2.G 5(-3-3j-y)
ER«—}AM ,ER(—E.—J/)

i

Noticing that each term in (28) is maximized

when y, =1+ for jeR“™), y,=1-j for

ie RV, y,=-3-3j for ie RT7),
respectively. This can be interpreted that the cost
function forces the output signal to have correct
symbol values through adjusting weights to
compensate amplitude and phase distortion induced
from channel.

On the other hand, the CMA cost function (1)

can be partitioned using a sample mean estimator as

2 2
Py = Z(R2_yi )2+ Z(RZ_yi )2
ieR*) ieR*1)
2 2
+ot DRy DR -y
ieR(3+37) ieR(3731
where R, = E[|4,[']/E[|4,[']=13.2. Clearly each

term in (29) is minimized when ‘ yi‘z =13.2 for all
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symbol  regions:ie R ie R4 ie RO,
This implies that the cost function of CMA pushes
output samples to have a constant power 13.2
regardless of symbol classes. Besides this signal
magnitude problem, channel phase problem is
another significant drawback to CMA. In many
cases of complex channel inducing channel phase

distortion with some angle &, the output ,;for

transmitted symbol 4, is rotated as

cosf —sinf || A4,z YiRe
, = (30)
sind  cos€ | A, | | Vim
It is clear that regardless of the phase shift 0 in

2 2
=[4.[".

30, Vi

V. Simulation Results and Discussion

The transmitted symbol is assumed to be i.id,
taking the equally probable values from{*1+ j,+3:
+j,£1£3/,#3+3}. The three complex blind

algorithms are considered: the CMA in (3),
MED-CME in (18), CMEDI in (22). The complex

channel models H,(z)and H,(z) B in this

simulation are

H, .(z) ==0.005+0.009z"" —0.024z

+0.854z7°-0.21827* —0.049z° - 0.016z"°

@31
H,,,(z) =-0.004+0.030z"" —0.104z
+0.520z7 +0.27327* —=0.074z75 +0.020z
H, g, (z)= —0.141z7' +0.95z7*
+0.27z7°-0.078z"*
(32)

H, i, (2) = -0.004z"' - 0.919z*

+0.37z7° - 0.089z ™

The variance of AWGN was 0.001. p .

764

U g am N qup aT€ set to be 0.0000005, 0.005,
and 0.001, respectively. The kernel sizes for ITL
algorithms are 15.0 for MED-CME and 0.5 for
CMEDI1. The convergence results are illustrated in
Fig. 2 for channel model Hl,and in Fig. 6 for
channel model H2. For Hl in Fig. 2, the CME
based CMA and MED-CME have produced very
poor minimum MSE performance but CMEDI1
converges well showing significant performance
enhancement by over 18dB comparing to CME
based algorithms. In Fig. 3-5, though ED based
blind algorithm MED-CME produces very

concentrated output points distribution comparing to
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Fig. 1. Channel magnitude and phase characteristics (red:
H\(2), blue : H,(2))
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Fig. 2. MSE convergence comparison for channel H1
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Fig. 3. Constellation performance of CMED1 for H1
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Fig. 4. Constellation performance of MED-CME for H1
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Fig. 5. Constellation performance of CMA for H1

CMA, the two algorithms can not cope with the
channel phase distortion. On the other hand, the

complex valued CMED1 based on ED minimization
criterion and a self-generated symbol set produces
output points that are well concentrated to the exact
constellation symbol points without any aid of phase
compensation.

To prove these advantages, we carried out the
simulation in a severer channel model H2 in (31).
As in HI1, the CME-based MED-CME and CMA
have yielded inferior MSE learning performance as
in Fig. 6, but MED-CME is better than CMA by
about 3 dB. This indicates that ED-based blind
algorithms have better performance than MSE-based
criterion. As predicted, the proposed CMED1 shows
superior performance enhanced by around 13dB
comparing to CMA.

Constellation performance is depicted in Fig. 7-9.

ChannelHZ
—a— CMEDN
—e—MED-CME

o 1000 2000 3000 4000

Iterations (x10)

Fig. 6. MSE convergence comparison for channel H2
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Fig. 7. Constellation performance of CMED1 for H2
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Fig. 8. Constellation performance of MED-CME for H2
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Fig. 9. Constellation performance of CMA for H2.

The CMA in this channel model results in very
dispersed and phase-distorted constellation in Fig. 9.
The ED-based MED-CME shows more concentrated
constellation than CMA but it still does not solve
the channel phase problem. The 3dB enhancement
of MED-CME is considered to be caused by
ED-based criterion. The constellation result of
CMEDI1 based on ED and a self-generated symbol
set for the channel model H2 still shows output
points that are closely concentrated to the exact

constellation symbol points.

VI. Conclusions

This study presents the performance and

characteristics of two complex blind ITL algorithms

166

which are based on minimization of PDF Euclidian
distance for complex channel blind equalization.
One is complex-valued MED-CME employing
constant modulus error and the other is
complex-valued CMEDI1 wusing a self-generated
symbol set.

In the analysis of the robustness of the proposed
algorithm CMEDI1 to channel phase distortions over
CMA rewriting the information potential IP,, as a
set of partitioned functions, it is revealed that the
cost function forces the output signal to have correct
symbol values and compensate amplitude and phase
distortion simultaneously without any phase com-
pensation process, whereas the cost function of
CMA pushes output samples to have a constant
power regardless of symbol classes and the phase
difference between the correct symbol and output
can not be detected in CME-based algorithms.

Simulation results for severely distorted complex
channels proved those characteristics through MSE
convergence and constellation comparison. The
CMED1 yielded output points that are closely
concentrated to the exact constellation symbol points
for both complex channel models. Therefore we can
conclude that the characteristics of CMEDI retaining
significantly enhanced performance of symbol-point
concentration and no need to solve channel phase
problems can be very promising in complex channel

blind equalization field.
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