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PDE-based Image Interpolators
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ABSTRACT

This article presents a PDE-based interpolation algorithm to effectively reproduce high resolution imagery. 

Conventional PDE-based interpolation methods can produce sharp edges without checkerboard effects; however, 

they are not interpolators but approximators and tend to weaken fine structures. In order to overcome the 

drawback, a texture enhancement method is suggested as a post-process of PDE-based interpolation methods. The 

new method rectifies the image by simply incorporating the bilinear interpolation of the weakened texture 

components and therefore makes the resulting algorithm an interpolator. It has been numerically verified that the 

new algorithm, called the PDE-based image interpolator (PII), restores sharp edges and enhances texture 

components satisfactorily. PII outperforms the PDE-based skeleton-texture decomposition (STD) approach. Various 

numerical examples are shown to verify the claim.
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Ⅰ. INTRODUCTION

Digital images must often be resampled for 

various tasks in image processing and computer 

vision such as image generation, compression, 

display, and zooming. Image resampling is necessary 

for every geometric transform of discrete images, 

except shifts over integer distances or rotations 

about multiples of 90 degrees; the first step of 

image resampling is image interpolation. Thus 

image interpolation methods have occupied a 

peculiar position in image processing and 

computer vision
[10],[11],[15], [16],[17],[20].

Various interpolation methods have been 

proposed in the literature. These methods have 

been traditionally characterized by two kinds: 

linear and nonlinear ones. For linear methods, 

diverse interpolation kernels (polynomials) of finite 

size have been introduced as approximations of 

the ideal interpolation kernel (the sinc function) 

which is spatially unlimited; see [9], [16], [17], 

[22], [23]. However, the linear methods perform 

the interpolation independently of the image 

content and therefore they may interpolate images 

crossing edges, which introduces artifacts such as 

aliasing distortions, image blur, and/or the 

checkerboard effect. Nonlinear interpolation 

methods have been suggested in order to reduce 

the artifacts of linear methods
[1],[4],[5],[13],[18]. The 

major step in the nonlinear methods is to either fi

t the edges with some templates or predict edge 

information for the high resolution image from 

the low resolution one statistically. These 

edge-directed methods usually result in sharper 

interpolated images, but occasionally suffer from 

severe visual degradation (e.g., bumpy visual 

impression) in fine texture regions. 

Recently, PDE-based methods have been 
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introduced to constrain continuity of edges and 

reconstruct appropriate sharp edges through 

iterations[2],[3],[12],[19], beginning from an image 

interpolated by a conventional interpolation 

method. These PDE-based methods introduce 

sharp edges without checkerboard effects; 

however, they tend to weaken texture components. 

Note that the resulting PDE-based algorithm, 

which is a composite of a conventional 

interpolation and a PDE-based edge-forming, may 

not be an interpolator but an approximator.

In this article, we will introduce a new texture 

enhancement method, which can be easily 

incorporated as a post-process of PDE-based 

interpolation methods
[2],[3]. Here our idea is 

simple: (1) measure the difference of the 

edge-formed image (produced by the PDE-based 

interpolation) and the original image in the low 

resolution and (2) add its bilinear interpolation to 

the edge-formed image, in order to make the 

overall operation an interpolator. In this article, 

the resulting algorithm will be called the 

PDE-based image interpolator (PII). As we will 

see, PII has proved superior to the skeleton- 

texture decomposition (STD) approach
[21], a PDE- 

based interpolation method.

The article is organized as follows. In the next 

section, after presenting general remarks on 

interpolation, we briefly review the PDE-based 

edge-forming method
[2],[3] and the skeleton-texture 

decomposition (STD) approach
[21]. Section III 

introduces the new interpolation method, the 

PDE-based image interpolator (PII). Its stability 

and efficiency issues are discussed in detail in the 

same section. In Section IV, the two

texture-enhancing PDE-based interpolation 

methods (the STD approach and PII) are 

compared with each other for various images. The 

proposed approach (PII) has proved superior to 

the STD approach. Section V concludes our 

development and experiments.

Ⅱ. PRELIMINARIES 

This section begins with general remarks on 

interpolation. Then, we present a brief review on 

the PDE-based edge-forming procedure suggested 

by the authors [2], [3] and the PDE-based 

skeleton-texture decomposition (STD) approach
[21].

2.1 General remarks on interpolation
An interpolation method is called an 

interpolator if the image values are not modified 

when resampled on the same grid; otherwise it is 

called an approximator. Thus the interpolators can 

avoid smoothing and preserve high frequencies. It 

is known that superior kernels are interpolators; 

even though the converse is not always true.

Interpolation methods applied to image zooming 

can in general produce higher resolution images if 

the interpolation is performed appropriately 

without introducing severe artifacts. A most 

common approach is to estimate edge information 

in order not to interpolate crossing edges. 

Edge-directed methods often produce clearer and 

sharper edges than linear methods. However, 

although the interpolation is carried out by an 

edge-directed method, an edge-forming process is 

necessary to sharpen edges further. For example, 

consider a binary image which is separated into 

two homogeneous regions by a vertical straight 

line. For this image, the correct edge direction 

can be easily found, but the information is hard 

to be incorporated to improve the interpolation 

quality. It is quite natural to apply one of the 

linear methods to interpolate the image and 

therefore the edge in the magnified image will 

look blurry.

See Figure 1, where a synthetic signal 

representing the aforementioned binary image is 

depicted, Figure 1(a), and interpolated by a factor 

of 3, Figure 1(b). Even though the interpolation is 

performed appropriately, the interpolated signal 

appears blurry due to the slow transition on the 

edge. Such a property can easily make interpolated 

images (in 2D) look blurry. Thus an edge-forming 

operation is necessary to apply when interpolation 

artifacts are to be minimized and an appropriate 

high resolution has to be achieved. An edge- 

formed signal is shown in Figure 1(c) along with 
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(a) (b) (c)

Fig. 1. Interpolation and edge-forming: (a) a synthetic signal, (b) the linearly interpolated signal by a factor of 3, and (c) an 
edge-formed signal (solid; thick) displayed along with the interpolated signal

the linearly interpolated signal.

The above example shows that an effective 

interpolation algorithm should incorporate an 

edge-forming operation, because otherwise the 

edges in the interpolated image may not be sharp 

enough.

2.2 The PDE-based edge-forming method
In the RGB representation, a color image is a 

mapping

  →
      ≥  ,

which can be decomposed into brightness and 

chromaticity:

       (brightness)

(1)
 





  (chromaticity)

where ⋅   is the least-squares (  ) norm. 

Thus the brightness  represents the length of the 

RGB vector and the chromaticity   denotes the 

normalized color component. It has been 

verified[6],[7],[14] that in image restoration, the use 

of the chromaticity-brightness (CB) decomposition

results in better restored images than conventional 

approaches such as the channel-by-channel model 

and the HSV system; in particular, the CB 

decomposition approaches can preserve color 

components more effectively.

Let

  
     

Associated with the minimization problems

 




∇   




∇    (2)

the Euler-Lagrange equations for the brightness 

and the chromaticity in the angle domain 

read
[14],[25] 

   ∇⋅∇
∇   

(3)   ∇⋅
∇  

  
∇

   ∇⋅
∇   

where    and

  ∇ ∇ 

Note that the chromaticity components ( and 

 ) are coupled each other in (3). When 

   , the model (2)-(3) becomes a total 

variation (TV) model. The TV is an indicator for 

the fluctuation of the image values; the more 

oscillatory the image is, the bigger the TV 

becomes. Thus, minimizing the TV is equivalent 

to smoothing local extrema.

To get an edge-forming model, we first scale 

the equations in (3) by a factor of ∇  or 

 , which makes the resulting equations 

more stable when they are numerically discretized. 

Then, in order to solve the equations more 

conveniently, an artificial time  is introduced for 

the parameterization of the energy descent 

direction. Finally, we impose a constraint term 

which enforces the resulting image values to 

approach the original values at the low resolution 

image pixels[2]:
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 ∇∇⋅∇

∇    

(4)



∇⋅


∇

    ∇ 
 




 ∇⋅


∇  

where     denotes an initialization of 

   and

  
     

Here   and  are positive parameters to be 

determined. The parameter   is introduced for a 

global scaling of  , while  must put an 

emphasis of  on fine structures when  . In 

practice, we may set  ∼ and choose   

such that the maximum of   is about .

In order for the model (4) to be able to form 

reliable edges, the parameter  must be set larger 

than  (in practice,  ∼) and the 

diffusion operator in the model must be 

discretized to show characteristics of anisotropic 

diffusion. For example, for the one-dimensional 

version of the brightness model in (4), the 

diffusion operator can be discretized as

 
 



 ≈


   




 



  

 

(5)

  
  ≈ 

⋅


where  and  are respectively finite 

difference approximations of  
  and 

 
  defined by

      

 

(6)

      

  

Here the regularization parameter    is 

introduced to prevent the denominators in (5) 

from approaching zero and is assumed to be 

small enough. Note that the right side of the 

second equation in (5) is the harmonic average of 

 and  . 

To solve the model (4) with a great efficiency, 

we will employ a linearized Crank-Nicolson 

scheme along with the alternating directional 

implicit (ADI) procedure
[8]. It has been 

numerically verified that the model (4) 

incorporating the numerical schemes of anisotropic 

diffusion (5)-(6) can form reliable edges 

satisfactorily and efficiently. However, it tends to 

weaken texture components.

2.3 The PDE-based skeleton-texture 
decomposition approach

The interpolation method to be presented in 

this subsection focuses on the interpolation of 

gray-scale images. For color images, the method 

can be applied in the channel-by-channel fashion 

to each of the RGB system, the HSV system, or 

the CB transformation.

The interpolation method suggested by Saito et 

al.
[21] begins with the multiplicative skeleton- 

texture decomposition (STD)

   ⋅   (7)

where  is the skeleton image,  denotes the 

texture generator, and  is the construction error. 

For the decomposition, the authors applied the 

additive STD method (in the logarithm domain) 

suggested by Vese and Osher[24]: Minimize the 

TV-based functional

  


∇ 




  ∇⋅
(8)

where      , uniformly bounded, and  

and  are positive constants. Let  ∇⋅ . The 

quantities , , and  in (7) are defined as
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    ⋅

(9)

Once the decomposition is performed, the three 

components are interpolated separately. The 

interpolated image of ,  ′ , is obtained as

  ′  ′⋅ ′   ′  (10)

where  ′  is the interpolation of  carried out 

by applying the TV-based deblurring-oversampling 

approach[19],  ′  denotes a statistically resampled 

interpolation of , and  ′  is the bilinear 

interpolation of a variation of ,  : 

   

(11)
       ≥

   
     

   ≥

Here  determines the upper limit of the 

strength of the texture enhancement and  is a 

threshold such that     for ≥  and 

≈  for ≈. The algorithm (11) has 

been designed to enhance texture components, but 

not to introduce over-shooting on texture-packed 

regions. Thus it enhances texture components 

more strongly on relatively slow transitions.

 It is clear to see that the above STD 

approach is not an interpolator but an 

approximator. As a consequence, when  ′ is set 

as the interpolation of    , the resultant 

image  ′  can be easily blurry. In order to reduce 

the blurry look, Saito et al.[21] introduced the 

variation of  presented in (11) and therefore 

they could enhance the texture components by 

setting  and  properly for the given image. 

However, the overall algorithm is still an 

approximator and the choice of  and  is 

problematic. The texture enhancement (without the 

interpolation capability) may introduce artifacts 

unless the parameters are set appropriately. 

Furthermore, the approach requires to set many 

parameters:  and  in (8),  and  in (11), 

and a constant and a convolution kernel for the 

TV-based deblurring-oversampling model[19]. (One 

may set    and   heuristically as in 

[21], though.)

Ⅲ. THE PDE-BASED IMAGE 
INTERPOLATOR

For a new texture-enhancing interpolation 

algorithm, we will begin with the PDE-based 

edge-forming method presented in Section II-2 

and try to make the overall algorithm an 

interpolator by simply incorporating the bilinear 

interpolation of the texture components that have 

been weakened during the edge-forming.

3.1 The algorithm: PII

Let   be the solution of the PDE-based 

edge-forming method presented in Section II-2. 

Then it can be written as

      
  (12)

where  is a given image of low resolution, 


 denotes a conventional interpolation method 

from the low resolution to the high resolution 

(zoom-in), and  is the operator of the 

PDE-based edge-forming. Let 
  be the zoom-out 

operator, the dual of 
.

 We suggest the following algorithm for the 

texture enhancement:

   (a)   
    

(13)   (b)    ⊖ 

   (c)  ′   ⊕ 

where  ′ is the final result, ⊕ denotes either 

addition   or multiplication ⋅ , and ⊖ is 

subtraction   or division ÷ . The functions   

and   can be viewed respectively as the skeleton 
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image and the texture generator of  .

The resulting algorithm incorporating the 

PDE-based edge-forming operation (12) and the 

texture enhancement (13) can be written as

 ′     ⊕ ⊖     (14)

where  is the identity in the low resolution. 

In this article, the resulting algorithm will be 

called the PDE-based image interpolator (PII). 

When an integer magnification is considered, the 

final result  ′  will have the same values as  at 

the grids of the low resolution image. Thus PII is 

an interpolator.

3.2 Stability of PII
It is interesting to consider stability of PII. It 

has been analyzed[3] that the edge-forming model 

(4) incorporating the anisotropic diffusion schemes 

(5)-(6) and a linearized ADI procedure satisfies a 

local maximum principle. By the local maximum 

principle, we mean the following. When the 

image is to be zoomed by ×  magnification, 

on each rectangle of ×  pixels of which four 

corner pixels correspond to grids of the low 

resolution image, the interpolated image has its 

minimum and maximum values on the four corner 

pixels. That is, there is no local extreme value 

which is either larger or smaller than the nearest 

four values of the low resolution image.

Furthermore, the magnified texture generator, 


 , satisfies the local maximum principle, 

because it is a bilinear interpolation of the 

residual in the low resolution (). Thus the 

resulting image  ′  cannot introduce local extrema 

inside the rectangles of ×  pixels. Such a 

maximum principle is important, because 

otherwise the algorithm may create unnecessary 

features during the interpolation.

3.3 Implementation of PII
In practice, PII for image zooming can be 

implemented, without carrying out 
  and 

 

explicitly in (13), as follows:

1) Zoom the given image  to find  , by 

employing one of conventional interpolators;

2) Obtain an edge-formed image   by applying 

the edge-forming model (4);

3) Find the difference      only at the 

grids of the low resolution image;

4) Interpolate  to obtain  , by applying the 

bilinear method for other pixels;

5) Find the final result:  ′  ⊕  ;

It has been observed that when the 

magnification factor is set large, the PDE-based 

edge-forming step (Step II) requires a relatively 

larger number of ADI iterations. PII converges in 

∼  iterations for ×  magnification and 

∼  iterations for ×  magnification, while 

it takes ∼  iterations for ×  

magnification. Thus, PII can be carried out by 

multiple applications of smaller magnification 

factors in order to speed up the computation. For 

example, when the image is to be zoomed by a 

factor of × , the zooming can be performed

by ×  magnification followed by ×  

magnification. Since the earlier interpolation, 

×  magnification, is carried out on a smaller 

domain, the total computational cost is not much 

larger than that of the later interpolation, ×  

magnification. PII is an optimal algorithm; it is 

an interpolator, converges fast, and can yield 

sharp edges, as we will see in the next section.

Ⅳ. NUMERICAL EXPERIMENTS

This section presents image zooming examples 

which show effectiveness of the PDE-based image 

interpolator (PII) and its superiority to the 

skeleton-texture decomposition (STD) approach, 

for both gray-scale and color images. For PII, we 

set   and  . The texture generator is 

incorporated additively, i.e., ⊕ and ⊖ denote 

respectively addition and subtraction in (13). (The 

multiplicative texture generation shows no 

apparent difference from the additive one for most 

cases; the additive one is occasionally better 
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(a)
 

(b)

(c)

 

(d)

Fig. 2. Cat Face (color): ×-magnified images by the 
STD approach with (a)  , (b)  , (c) 

 , and (d) by PII

(a)

 

(b)

Fig. 3. Eye (color): ×-magnified images by (a) the 
STD approach with   and (b) PII

slightly.) For the STD approach, the threshold  

in (11) is set to be the arithmetic average of  . 

For both algorithms, we have employed the same 

linearized Crank-Nicolson ADI procedure, with the 

timestep size   , and the strategy of 

recursive applications of smaller magnification 

factors in order to speed up the computation.

In the following figure, we will first analyze 

effects of the parameter  (11) introduced for 

the STD approach to enhance the texture 

components on relatively slow transitions, and 

then compare the STD approach with our new 

algorithm, PII.

Figure 2 shows numerical results from the two 

algorithms: the STD approach
[21] and the proposed 

method, PII. In order to see how the parameter 

 affects the texture enhancement capability of 

the STD approach, Figures 2(a)~2(c) depict the 

interpolated images processed by the STD 

approach with  ,  , and  , 

respectively. As one can see from these three 

figures, the STD approach tends to yield images 

of higher contrast as   increases. However, the 

overall image quality is not improved 

satisfactorily. The image in Figure 2(c) shows 

stronger texture components than those in Figures 

2(a) and 2(b), but it involves also apparent 

artifacts due to an over-shooting on slow 

transitions; see e.g. a vicinity located between the 

nose and the left eye. Note that the texture 

enhancement scheme in (11) is designed to 

enhance texture components, focusing on slow 

transitions, and that the resulting algorithm of the 

STD approach is an approximator. On the other 

hand, the new method has reproduced clear edges 

and texture components in high resolution 

satisfactorily over the whole image domain. In 

particular, around eyes and the nose, PII assigns 

much clearer features than the STD approach.

We have found that the parameters  and  

introduced in (11) are problematic and for many 

cases, their choices make little improvement in 

image quality. We believe that the operation in 

(11), which simply magnifies the oscillatory 

patterns, is not a desirable solution for the texture 

enhancement. In the following, the STD approach 

is performed with   .

In Figure 3, we present zoomed images of 

(Tiffany’'s) Eye processed by the two algorithms. 

As one can see from the figure, the new 

algorithm has produced clearer texture components 

and better contrasts. See particularly around the 

eyebrow and the eyelash. This example shows 

again that the new texture-enhancing interpolation 

algorithm (an interpolator) can bring out zoomed 
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(a)

 

(b)

Fig. 4. Lena (gray-scale): ×-magnified images by (a) 
the STD approach with   and (b) PII

(a)

 

(b)

Fig. 5. Zebra Neck (gray-scale): ×-magnified images 
by (a) the bilinear interpolation and (b) PII

(a)

 

(b)

Fig. 6. Grass (color): ×-magnified images by (a) the 
bicubic interpolation and (b) PII

images more satisfactorily than the STD approach 

(an approximator).

It should be noticed that the STD approach is 

more expensive than PII, due to the additional 

operation of skeleton-texture decomposition which 

solves the associated Euler-Lagrange equations of 

(8). See [24] for details.

Figure 4 depicts zoomed images of Lena in 

gray-scale magnified by a factor of × , by 

employing three recursive applications of ×  

magnification. Again, the suggested method is 

superior to the STD approach for this example. 

See the left upper part of the image and eyes; 

the new method has demonstrated texture 

components of higher contrast. With the new 

interpolation algorithm, the zoomed image has 

successfully gained a desirable high resolution on 

both edges and texture components.

The following examples will show effectiveness 

of PII in the reproduction of both sharp edges 

and clear texture components.

Figure 5 depicts zoomed images of Zebra 

Neck, magnified by a factor of ×  by (a) 

the bilinear interpolation and (b) PII. PII has 

utilized the image in Figure 5(a) as the basic 

interpolation and employed two recursive 

applications of ×  magnification. As one can 

see from the figure, PII has successfully 

introduced a desirable high resolution on texture 

regions and reduced the checkerboard effects quite 

effectively. The stripes in Figure 5(b) particularly 

look better than those in Figure 5(a).

Figure 6 depicts zoomed images of Grass, 

magnified by a factor of ×  by (a) the 

bicubic interpolation and (b) PII. As in the 

previous example, PII has utilized the image in 

Figure 6(a) as the basic interpolation. Again, it 

has successfully reduced the checkerboard effects, 

while reproducing clear texture components, to get 

a better image from the basic image interpolated 

by the bicubic method.

Ⅴ. CONCLUSIONS

Conventional PDE-based interpolation methods 

can produce sharp edges without the checkerboard 

effect; however, they tend to weaken texture 

components. In order to overcome the drawback, 

this article has introduced a simple texture 

enhancement technique to be employed as a 

post-process of conventional PDE-based methods. 

The texture enhancement has been carried out for 

the resulting image just to preserve the image 

values at the grids of the low resolution image. 

Thus the resulting algorithm, called the 

PDE-based image interpolator (PII), is an 

interpolator. It has been verified that PII is more 
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effective than the PDE-based skeleton-texture 

decomposition (STD) approach[21] in both 

efficiency and the reproduction quality of fine 

structures. From various numerical experiments, 

we have reached the conclusion that a PDE-based 

edge-forming method can be effective in the 

interpolation and satisfactory in the texture 

enhancement, when it is simply modified to 

become an interpolator.
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