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A Geometric Derivation of the Craig Representation for the
Two-Dimensional Gaussian Q-Function
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ABSTRACT

In this paper, we present a new and simple derivation of the Craig representation for the two-dimensional
(2-D) Gaussian Q-function in the viewpoint of geometry. The geometric derivation also leads to an alternative
Craig form for the 2-D Gaussian Q-function. The derived Craig form is newly obtained from the geometry of
two wedge-shaped regions generated by the rotation of Cartesian coordinates over two correlated Gaussian noises.
The presented Craig form can play a important role in computing the probability represented by the 2-D

Gaussian Q-function.

I. Introduction the Craig form for the one-dimensional(1-D)

Gaussian Q-function were recently reported*. The

It is very important to evaluate error probability
performance in designing wireless communication
systems. The Craig representation has played a key
role when evaluating the error probability
performance of digital modulation systems over
fading channels by using the moment-generating

function(MGF) approach“'ﬂ. Several derivations of

Craig form for the 2-D Gaussian Q-function applied
to compute the error probability of M-ary phase shift
keying system over various fading channels'® .
The approximation for the 2-D Gaussian Q-function
was presented in terms of the 1-D Gaussian
Q-function'™. The algebraic derivation of the Craig

form for the 2-D Gaussian Q-function was presented
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in terms of the change of variables””. However, it is
said that there may exist a simple and new
derivation of the Craig form.

It is well-known that the geometric derivation is
easy to understand. Thus, in this paper, we will
present a geometric derivation of the Craig
representation by using the rotation of Cartesian
coordinates. We hope that the presented derivation is
easy and simple to understand the Craig form for
the 2-D Gaussian Q-function.

II. Problem

Our starting point is the analytical expression of
a double integral for the 2-D Gaussian Q-function in

the following:

[ u? *quu+u ]
2(1— p)
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where p represents the correlation coefficient.
Chronologically, Simon first derived the Craig form
of the 2-D Gaussian Q-function by using the clever
change of variables'”’

[ tan® +p
6= tan 1(7/ )

N

It is also known that the Craig representation of
the 2-D Gaussian Q-function developed by Simon is

. 9, . (10
given by > ¢ (9
( : 1 (VI Faly)/ 0 paly) ( 22 )
T,yp)= 5= exp|— 5~
Qle.yip 2m P 2sin’9
1 tan (V1= g y/a)/ (1= py/a) yz (3)
— exp|— ———|db;
2w J 2sin6
z=0,y=0.
where

ton {2 )= 201 sgnl)] +sgnlyeen | ]

in which sgn(u)=1 if « >0 and sgn(u)=—1 if u <0.
The generic Craig form for the 2-D Gaussian

[10]

Q-function provided in was derived from the
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upper limit of (3) and the properties of the 2-D
Gaussian Q-function given in !'" ¢4 (039 and (639
So far, however, geometric interpretations on the
change of variables (1) have not been reported in
detail.

It is said that the geometric solution of a problem
is easy and simple. Thus, in this letter, motivated by
unknown geometric derivation of the Craig form for
the 2-D Gaussian Q-function, we present a new
derivation for the Craig form on the basis of the
geometry of two wedge-shaped regions. The regions
are generated by the rotation of Cartesian

coordinates.

. Geometric Derivation of the Craig form
for the 2-D Gaussian Q-Function

We consider X and Y to be two-dimensional
Gaussian random variables (RV) with two zero
means, py = py =0, tWo unit variances, o5 = 03 =1
and a correlation coefficient, p,,. Figure 1 shows a
graphical representation of the open region,
N={(z,y)| X = z*, Y > y*},

constants z*,y* > 0.

determined by two

Here, as illustrated in Figure 1, we rotate the
Cartesian coordinates counterclockwise through the

angel ) =tan™ ' (y*/z*) about the origin in a way that
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Fig. 1. The geometric interpretation on two wedge-shaped
regions generated by the rotation of Cartesian coordinates.
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In terms of U— V Cartesian coordinates, the open
region, 2={(z,y)lX=z* Y=>=y*}, can be divided
into two wedge-shaped regions, <APU and *BPU.
The probability of the wedge-shaped region,
Pr{«APU}, is obtained by using (4) and the theory

of linear combination of Gaussian RVs as

Pr{xAPU}=Pr{X>=2* V> 0} 5
= Q(m*’O;pXV) ©)

where

—siny +pycosyp

Pxv = V1=pyysin2y ©

Similarly, the probability Pr{s« BPU} is obtained as

Pr{xBPU}|=Pr{Y>y* V<0} @
_ o — QpYVZ/U"F’UQ
2(17/72)/1/’)

exp[
A =
A 2m 1*p2YV

dvdy

where

081) — pyySinyg

prv= )
Employing "" €263 5 (7) gives
Pr{xBPU)}= Qy*,0:=pyy). ©)

Next, applying "> @ @9 {6 (5) and (9),
respectively, and using the trigonometric identity for
sin '¢+cos !¢ =n/2 yield the result in the Craig
form as

1 %+si1flpmv

Qa*,y*ip) = > exp|
T J

*?
2sin’f

1 cos 'pyy ,y*2
+— / exp(* — |df
2 J 2sin’0

¥ >0, y*> 0.

10)

Finally, letting z*=2 and y*=y and substituting

costp=xz/Va?+v* and sinp=y/Vz>+y* into (10)

result in an alternative expression for the Craig form

presented in (3) as

] 5 tsin ‘[%) 2
(z,y;p) V&Y lex pl — - )d9
Q.yip 2mJ P 2sin%0
s T=py 2 11
NI ( "'2’2”-’””!f)exp(— yz )de; (1)
2w J 2sin0

z=0,y=0.

Note that the alternative expression of (11) do not
require the user-defined arc tan function such as the

upper limit of (3).

IV. Conclusion

The main contribution of this paper is the
geometric derivation of the Craig form for the 2-D
Gaussian Q-function by wusing the rotation of
Cartesian coordinates. The new derivation leads to
the alternative Craig representation of the 2-D
Gaussian Q-function with geometric interpretation.
The derived expression can be applicable to the
exact computation of the probability represented by
the 2-D Gaussian Q-function.
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