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Signal-to-Noise Ratio Formulas of a Scalar Gaussian Quantizer 

Mismatched to a Laplacian Source
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ABSTRACT

The paper derives formulas for the mean-squared error distortion and resulting signal-to-noise  ratio of a 

fixed-rate scalar quantizer designed optimally in the minimum mean-squared error sense for a Gaussian density 

with the standard deviation   when it is mismatched to a Laplacian density with the standard deviation  . The 

SNR formulas, based on the key parameter and Bennett's integral, are found accurate for a wide range of 

≡ 
 ≧  . Also an upper bound to the SNR is derived, which becomes tighter with increasing rate  and 

indicates that the SNR behaves asymptotically as 


  dB.
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Fig. 1. A Gaussian quantizer mismatched to a Laplacian 
source: σ q = 1 and σ p = 2.

Ⅰ. Introduction

Consider an -point fixed-rate scalar quantizer 

  that is designed optimally in the minimum 

mean-squared error (MSE) sense for a probability 

density function  but is applied to a source with 

another density function , where 
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These density functions are plotted in Fig. 1 in 

the case of    and   . In this 

“shape/variance-mismatched” quantization we are 

interested in finding formulas for the MSE distortion 

  
∞

∞

 
 (2)

and the resulting signal-to-noise ratio 






 dB. The standard deviation 

ratio ≡  is a measure of variance mismatch.

Certainly, the best possible  is attainable 

when   . In this matched case, we get the 

minimum distortion   from [1] as

  
 

∞
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.

In the case of optimal   for a zero-mean 

Gaussian density with variance 
 ,   




 

and therefore the   reduces to approximately 

, where  .
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Since, throughout the paper,   is optimal for 

zero-mean Gaussian , its thresholds     

and quantization points  , depicted in Fig. 1, 

are symmetric, i.e., for  ,       and 

    . The region   will be called the 

inner region and the distortion from it the inner 

distortion, denoted  . Similarly the union 

 ∪    will be called the outer region 

and the distortion from it the outer distortion, 

denoted  . The region-defining threshold   (of 

optimal  ) is called the key parameter.

The main result of the paper is a set of formulas 

for the MSE distortion and the resulting , 

namely   and  . They are derived using the 

methodology developed in [2], a formula from [3] 

and Bennett's integral [4] for approximating the key 

parameter and the inner distortion, respectively. The 

inner distortion is further approximated using Lether 

and Wenston's approach [5] to Dawson's integral 

that results from evaluating Bennett's integral. 

Similarly the outer distortion is approximated using 

Börjesson and Sundberg's approximation [6] to the 

 function. Numerical results show that, for a wide 

range of ≈∼, these formulas predict s 

approximately within  from the true values for bit 

rate ≳. Also found is that an upper bound   

to the  derived using only the outer distortion is 

tight (approximately within  of error) for ≳ 

and ≳. The significance of the paper is in the 

derivation of the closed-form expression for the  

due to “shape / variance- mismatched” quantization. 

For example, the comparison of 
 with the 

above optimum from [1] shows the loss of  and 

 dB in the case of  and  when  , and 

 and  dB when  .

The upper bound 
 simplifies to  







  dB for large , which 

reveals rather an interesting relationship that, upon 

accepting its accuracy, the  is eventually 

proportional to the square-root of  and inversely 

proportional to . To the best of the authors’ 

knowledge the results presented herein have not 

been previously reported in the literature. 

The rest of the paper is organized as follows. 

Section II explains the methodology and derives the 

principal formulas for the distortion. Section III 

presents numerical results, assesses the accuracy of 

the principal formulas, and discusses their 

implications. Finally Section IV summarizes and 

concludes.

Ⅱ. Approximation Formulas for Distortion

To derive an approximation formula for  , 

we have taken the following approach [2]: (a) use 

an approximation formula for the key parameter  ; 

(b) approximate the inner distortion   by Bennett's 

integral and the outer distortion   by a formula 

derived herein; and (c) add these approximations for 

the total distortion. The details follow.

2.1 Approximation Formula for the Key
Parameter 

The following formula for   from [3, Eq. (17)]

≈ 





 


  

 
 
  




   
 
 





(3)

yields values within  from the true   for 

≧.

2.2 Approximation Formula for the Inner 
Distortion

The inner distortion   is often approximated by 

Bennett's integral
[4]

:

  



   

 ≈  
 





 

 


where  being the limiting optimal point density 

of  , is given by 
 


∞

∞

 

 

. Using the 

even symmetry of ,  and  , and noting 

that ≈ for large  lead to the 

approximation  ≈
  for large , where

≡
 










 








 


 



www.dbpia.co.kr



한국통신학회논문지 '11-06 Vol.36 No.6

386

which, by completing the square and changing 

variables, can be rewritten as

















 


 






 .

In terms of Dawson's integral ≡












, 


















 


 

 



 

 







. (4)

2.3 Approximation Formula for the Outer 
Distortion

The outer distortion   


∞

 
 

(also denoted  ) can be shown in a straightforward 

manner, with the substitution for  and 

integration by parts, to be 






 

 


 
. (5)

Since the quantization point  , being optimal, is 

the centroid of ∞ with respect to , it is 

related to   through 
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∞




















, (6)

where  




∞


 




 is the  function.

2.4 Formulas for the Signal-to-Noise Ratio
The  of  , will be approximated by the 

following  : 

≡




, (7)

where 
 , the sum of (4) and (5). One can 

see that, upon inspecting (4), (5) and (6), the key 

parameter   is the only  -related quantity needed 

to compute   and, when it is evaluated using 

(3),   is completely determined. The two special 

functions, Dawson's integral and the  function, 

need to be evaluated in the process.

Another formula proposed is   (formally 

defined in (13) below) obtained from (7) substituting 

Lether and Wenston's approximation for Dawson's 

integral and Börjesson and Sundberg's approxi-

mation for the  function. Lether and Wenston [5] 

have proposed the following approximation to 

Dawson's integral:

≈



 

, (8)

where ≈ and   ≈. 

The maximum error of the approximation is  

from the true value over all real . With (8) in (4) 

≈
≡  

 













 



 




  











 

 
















 

 






 







 

 
 



. (9)

Börjesson and Sundberg's approximation [6] to 

the  function

≈












 


(10)

is accurate for  with the maximum error of 

 at ≈. With (6) and (10) 



 
≈
















 






. (11)

Then combining (11) with (5) yields 
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1 0 -8.24 -1.10 2.03 2.94 2.75 2.26 1.21

2 0.981598821 -2.29 4.52 7.05 7.18 5.70 4.47 2.30

3 1.747927491 4.03 10.24 12.20 11.39 8.46 6.49 3.29

4 2.400803398 10.19 15.99 17.40 15.40 10.97 8.32 4.19

5 2.975926035 16.18 21.82 22.54 19.10 13.22 9.97 5.00

6 3.492269162 22.14 27.72 27.47 22.42 15.25 11.47 5.75

7 3.962315400 28.11 33.66 32.06 25.38 17.11 12.85 6.43

8 4.395065527 34.10 39.62 36.23 28.06 18.82 14.13 7.07

9 4.797249491 40.10 45.58 39.96 30.52 20.41 15.32 7.66

10 5.173991021 46.12 51.53 43.30 32.80 21.91 16.44 8.22

11 5.529245868 52.13 57.45 46.34 34.95 23.33 17.50 8.75

12 5.866110888 58.15 63.31 49.15 36.98 24.67 18.51 9.26

13 6.187035222 64.17 69.07 51.78 38.91 25.96 19.47 9.74

14 6.493992892 70.19 74.67 54.28 40.76 27.19 20.39 10.20

15 6.788802792 76.21 80.02 56.67 42.54 28.37 21.28 10.64

16 7.070054370 82.23 84.99 58.94 44.23 29.50 22.13 11.06

Table 1. Optimal Gaussian quantizers: the key parameter   and s when mismatched to Laplacian sources

≈
≡































 





























 




 











. (12)

Therefore,   is now formally defined as

≡




, (13)

where ≡  , the sum of (9) and (12). 

Compared with  , the convenience of   

consists in the fact that the evaluation of the special 

functions is eliminated and the mechanism by which 

 and   (hence ) affect the distortion is shown 

more clearly.

An upper bound to  is obtained noting that 

the total distortion   is always greater than the 

outer distortion   and therefore ≡




 

is an upperbound to the . The following 

approximation for   follows from using the 

approximation (12) for   and keeping the three 

most significant terms in (3) for   with   and 

also inside the logarithm term in the resulting 

expression: 

     ≈






 






 . (14)

Ⅲ. Numerical Results

In this section the accuracy of the derived 

formulas are evaluated. Toward this goal, optimal 

quantizers for  with    are designed for the 

bit rate  ranging from  to , using the 

Lloyd-Max algorithm [7, 8]. The algorithm stops 

when the candidate quantization point    

is within    of the best quantization point of 

∞, i.e., 



∞






∞



.
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Fig. 2. The (shaded surface),  (thin mesh lines), 

and  (thick mesh lines) with respect to  and .

3.1 Accuracy of the Formulas
Table 1 lists the key parameters   and the s 

of optimal   mismatched to Laplacian densities for 

various values of . (They are also plotted as a 

shaded smooth surface in Fig. 2.) These true s 

are evaluated numerically using the designed optimal 

quantizers. A general trend in the studied rate range 

of  to  is that at a fixed , as  increases from 

, the  increases before it eventually 

decreases. This phenomenon reflects the fact that for 

a fixed , a small  results in “idling” of a large 

portion of   so that an increase in  causes a 

wider portion of   to be active, effecting a 

reduced distortion, and a further increase in  results 

in heavy tail probability that contributes to a large 

outer distortion and hence a larger total distortion. 

Another observation is that, for a given , the rate 

of increase in the  slows down with , which 

is especially noticeable in the case of ≧.

The formulas   (7) and   (13) are 

evaluated using (3) for   to assess their accuracy 

and   (14) is also evaluated. The relative errors 

of   and   from the true s are 

approximately  or less for ≧,  or less for 

≧, and  or less for ≧. Fig. 3 shows the 

plots of the true ,   (the values for   

and   are so close that   is omitted in Fig. 

3 to avoid clutter), and  . It is noted that the 

plots of the true  and   are so close that 

they virtually overlap, making them indistinguishable 

except for ≦ and ≦. The plots of   in 

dashed lines are also indistinguishable from those of 

the true  and   in the case of ≦ and 

≧ and are noticeable only for ≦, which 

shows that   is tight for large ≦ even at 

low . The tightness of   indicates that for 

large   the total distortion is dominated by the outer 

distortion. For  ∼ a rough numerical fitting 

shows that   is approximately at  or less 

above the true values if ≳  and  or less 

if ≳. At small values of ≦ the accuracy 

of   as an approximation of the  suffers 

greatly from the ignored inner distortion in the 

studied bit range, as evidenced in the case of   

in Fig. 3, and it is necessary to use   or   

for improved accuracy.

Based on these observations it is concluded that 

the formulas for   and   are accurate 

overall and that   can be useful when 

accompanied with a proper condition.

Fig. 3. The (―),  (―), and  (---)

3.2 Further Discussion
The overall profiles of the ,   and   

are given in Fig. 2 with  ranging from  to  

in the interval of  and  ranging from  to . 

The smooth shaded surface represents the , 

whereas the thin and thick mesh lines respectively 

represent   and   that are within  from 

the . The  error region of   includes that 
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of  . As discussed in 3.1, these regions are 

roughly specified by ≳ and ≧ for   

and ≳ for  .

The  surface in Fig. 2 can be divided into the 

small-, medium-, and large- regions corresponding 

to ≲, ≲≲, and ≳, respectively. In 

the small- region the  appears to increase 

almost linearly with  in the studied bit range. In 

the medium- region the  seems to start with a 

linear growth but end up with a sublinear growth 

that is suggestive of a square-root law as in the case 

of the large- region. In the large- region the  

increases slowly and levels off, which can be 

explained inspecting   in (14). It shows that 

  is asymptotically (large ) proportional to the 

square root of  and inversely proportional to , as 

it simplifies to 


  dB. (However, this 

formula turns out rather loose in the studied bit 

range.) Therefore, it is not very surprising to 

observe the inverse proportionality of the (true)  

to  for ≳∼, e.g., from the last row of Table 

1 one gets       ∼

 


 


 


 

for .

Ⅳ. Summary and Conclusion

The paper has derived approximation formulas for 

the MSE distortion and the  of optimal 

Gaussian quantizers mismatched to a Laplacian 

source. The derivation uses a formula for the key 

parameter, Bennett's integral for the inner distortion, 

Lether-Wenston's approximation for Dawson's 

integral and Börjesson-Sundberg's approximation for 

the  function. The derived formulas for the  

are accurate overall. An upper bound to the  is 

also derived using the outer distortion only and 

found to be useful, e.g., in the case of ≲≲ 

if ≳ for the relative error of  or less, as 

well as the case of ≧ if ≧. This upper 

bound reduces asymptotically to 


  dB, 

whose discovery appears to be rather interesting in 

that it shows that the  is eventually proportional 

to the square root of the rate and inversely 

proportional to the deviation ratio. This paper can be 

useful when one wants to evaluate and predict the 

 of a Gaussian quantizer applied to Laplacian 

distribution. 
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