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ABSTRACT

Recently, subspace analysis has raised its performance to a higher level through the adoption of kernel-based 

nonlinearity. Especially, the radial basis function, based on its nonparametric nature, has shown promising results 

in face recognition. However, due to the endemic small sample size problem of face data, the conventional 

kernel-based feature extraction methods have difficulty in data representation. In this paper, we introduce a novel 

variant of the RBF kernel to alleviate this problem. By adopting the concept of the nearest feature line 

classifier, we show both effectiveness and generalizability of the proposed method, particularly regarding the 

small sample size issue.
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Ⅰ. Introduction

As the security has risen on public concerns, face 

recognition has received increasing attention over 

the last decade[1]. This challenging research topic has 

attracted many researchers for its wide range of 

potential applications
[2]. However, there still remain 

a lot of issues to be solved for recognizing faces 

from images in practical use. One of the issues is 

extraction of proper features. 

Among various approaches so far published and 

suggested, the subspace-based methods, such as 

principal component analysis (PCA)
[3], linear 

discriminant analysis (LDA)[4], and independent 

component analysis (ICA)
[5], showed promising 

results. These linear feature extraction methods are 

further improved via nonlinear generalization 

through the kernel functions
[6], yielding their 

kernel-based counter parts[7-9]. Especially, owing to 

its nonparametric nature, radial basis function (RBF) 

achieves remarkable performance in terms of 

recognition accuracy. There is conceptual resemblance 

between RBF and k-nearest neighbor classifier 

(kNN) where it has been proven that RBF performs 

the nearest-neighbor mapping when its Gaussian 

kernel's radius approaches zero
[10]. Since face data 

has heteroscedastic (nonidentical within-class scatter-

ness) distribution, this nonparametric nature enables 

the RBF-based methods to be among the best 

performers
[11]. 

However, in real application, RBF-based methods 

suffer from the curse of dimensionality and the 

small sample size problem
[12]. These problems arise 

whenever the number of samples is not large enough 

compared to the dimensionality of the samples, 

which is very common in face recognition. Also, 

because the nonparametric approaches are highly 

unstructured, they don't give any understandings of 

the data
[11]. In such situation, it is even harder to 

represent the distribution of each class/identity of 

data with RBF's identical and symmetric kernel 

functions, and it eventually yields unreliable 

responses
[13].

In a similar context, small number of samples 
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also makes kNN fail to sufficiently represent 

complex variations of face data[14]. To extend the 

capacity of data representation, nearest feature line 

(NFL) was proposed
[15]. Here, it is argued that the 

feature line connecting two feature points of a class 

gives better generalization than kNN having those 

points as its prototypes. Recently, NFL is 

successfully applied to feature extraction in [16, 17] 

proving its generalization capacity.

Noting the similarities between the immanent 

nature of RBF and that of kNN, we propose a novel 

kernel function, elongated RBF (eRBF), inspired by 

the success of NFL. In the proposed eRBF, a 

Gaussian function stretched along an NFL 

connecting neighboring sample pair is used as a 

basis function. Owing to nonidentical kernel 

functions which capture potential data variations and 

better preserve local structures, we can achieve more 

generalizable data representation and higher 

recognition accuracy. 

The organization of this paper is as follows. In 

section II, we introduce the proposed eRBF in 

detail. The comparative experiments applying eRBF 

and other types of kernels to three different facial 

feature extraction methods are presented in section 

III. Finally the paper is concluded with discussions 

in section IV.

Ⅱ. Proposed methodology

2.1 Preliminaries of RBF-based feature extraction
A nonlinear feature based on RBF can be 

extracted as follows:

 




 , (1)

where 

  ∥ ∥ (2)

is a RBF kernel function and   is a corresponding 

weight for extracting feature . In the conventional 

kernel trick-based implementations [7-9], the entire 

training samples are utilized as basis functions 

which also can be interpreted as a RBF network 

taking every training sample   as the center of each 

kernel function with common radial variance . So, 

finding suitable features is done only by adjusting 

the weight  which can be seen as output layer 

weight of RBF network. 

On the other hand, the construction of RBF 

network generally contains the procedure of finding 

a proper set of basis functions. This procedure 

consists of setting the centers of RBFs and finding 

individually tailored variance size   for each kernel 

function via various clustering methods such as 

k-means algorithm
[13]. 

However, directly applying such strategy to facial 

feature extraction is also problematic because of the 

small number of samples. When the number of 

samples per a class is small, approximating their 

variation by clustering does not help the trained 

kernels either in better representing the data 

distribution or in extracting facial features 

generalizable to unseen data. 

Considering these remarks, we pursue following 

two aims in designing the proposed new kernel 

function:  

To define a new kernel function which captures 

potential data variation for better generalizability.

To define centroid, orientation, and variance of 

kernel function so that it is adaptable to 

heteroscedastic data

Fig. 1. Ellipsoidal RBF kernel function based on a sample 
pair,   and .   and   are the mean and the standard 
deviation of the sample pair, and  is the radius parameter 
determining overall spread  

2.2 Definition of elongated RBF based on a 
neighboring sample pair

Preceding researches have shown that, a feature 

line (FL) connecting two samples from a class gives 
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Fig. 2. Distribution of face data from two different 
individuals marked as ‘x’ and ‘o’.   and   belong to 

class ‘x’ and   to class ‘o’.

better representativeness than utilizing the samples 

as individual prototypes in kNN[15-17]. This implies 

that, for a given FL and its corresponding class, data 

variation along the FL is more likely than other 

directions. So we have designed the eRBF as shown 

in Fig. 1, allowing more variance of 
 along 

the FL, and less for other directions with amount of 

. Here,   and  (∈) are neighboring 

samples from the same class,  and  

respectively are the mean and the standard deviation 

of the sample pair, and  is the radius parameter 

which determines the overall spread of the basis 

function. This can be expressed by following 

equation. 

 

  


  
, (3)

where      is a N-by-N transform 

matrix consisting of orthonormal vectors such that 

only the first vector is specified as 


   ∥ ∥, (4)

and

     (5)

is a N-by-N diagonal matrix.

Noting that the vectors 
  span the 

null-space of 
, the computation of Eq. 3 can be 

simplified as:

   ∥∥
∥∥ , (6)

where 
  and 

  are the parallel and the 

orthogonal components of    to 
 

respectively. Their L2-norms can be calculated as:

∥∥ ∥ ∥
∥ ∥ (7)

and  

∥∥ ∥ ∥ ∥∥. (8)

NFL implementation proposed in [15] constructs 

the FLs using all possible within-class sample pairs. 

However, such approach is unsuitable for 

constructing eRBF in two aspects. Firstly, FLs 

connecting distant samples may cause undesirable 

side effects. As two samples are located far from 

each other, they are more likely to differ in various 

external conditions, such as pose, illumination, etc., 

and their effects are so much complicated so that it 

is hard to be detected linearly
[18]. Fig. 2 shows an 

exemplary case of face data. Here, the dashed-line 

illustrates a FL,   , connecting farthest within- 

class sample pair,  and . In the context of kNN 

and NFL, this FL substantially reduces classification 

margin which means simply interpolated and 

extrapolated points of distant sample pair might 

carry altered identity information. Secondly, the 

number of FLs grows rapidly as the number of 

available samples increases. Since the number of 

kernels determines the dimensionality of extracted 

features, pairing all possible samples leads to an 

explosion of dimensionality.

In order to prevent these issues, we need a 

criterion to determine which sample pairs should be 

used for eRBF. In this paper, we propose to pair 

nearest neighboring samples of which the proximity 

is measured by Mahalanobis distance. The strategy 
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(a)

 

(b)

Fig. 3. Samples of experimental data of (a) FERET and 
(b) AR databases

of connecting nearby samples is expected to avoid 

the construction of undesirable basis functions, and 

utilizing Mahalanobis distance enables us to find the 

neighborhoods substantially in the PCA-whitened 

space. In this way, more meaningful local structures 

could be captured. Noting all these remarks, we 

define a set of within-class neighbors as follows:

Definition (Set of within-class neighbors). 

Given a pair of data indices  , it is the member 

of the set   iff  is one of the k nearest 

within-class neighbors of   in terms of 

Mahalanobis distance or vice versa.

Using these selected data pairs, one can have 

eRBF-based feature of arbitrary input   as follows:

  
∈ 

 . (9)

Although this equation is quite similar to that of 

RBF shown in Eq. 1, eRBF is inapplicable directly 

to conventional kernel trick-based methodologies. 

This is because eRBF is a nonsymmetric function, 

and thus does not satisfy Mercer's condition
[6]. 

So, in order to find the feature weights , we 

need to calculate eRBF outputs of training data 

firstly as follows:

   , where 

  ∈ 


. (10)

Then,  can be trained by linear feature 

extraction methods such as PCA and LDA taking 

  as input. The procedure of implementing feature 

extraction based on the proposed eRBF is 

summarized as follows:

Train PCA to calculate the Mahalanobis distance.

Find the set   based on its definition.

Construct eRBFs by calculating 
,  and .

Calculate eRBF outputs of the training data,  , 

as Eq. 10

Find feature extraction weights, , by desired 

feature extraction methods using   as input data.

Extract features from an arbitrary input   by Eq. 9.

Ⅲ. Experiments

In order to evaluate the proposed eRBF, two 

publicly available databases, FERET[19] and AR[20], 

are adopted in this study. All images are normalized 

to 56 x 46 pixels according to the manually marked 

eye centers. Then, they are masked, histogram- 

equalized, and scaled to have zero mean and unit 

variance pixels. Samples of the images are shown in 

Fig. 3. 

We consider only the verification scenario where 

the results are reported in terms of the equal error 

rates (EERs) averaged from the 4-fold cross 

validation. For the cross validation, the whole data 

set is divided into 4 subsets so that there are no 

common individuals, and, for each iteration, 3 

subsets are used for training and the remaining one 

for testing.

The proposed eRBF is tested in comparison with 

two other kernel functions, RBF and Polynomial, of 

which the formulations are shown in Eq. 11 and 12, 

respectively:

  ∥ ∥ (11)

and

   
. (12)
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Fig. 4. Resulting EERs of FERET experiments on (a) KPCA, (b) KICA, and (c) KFD
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Fig. 5. Resulting EERs of FERET experiments on (a) KPCA, (b) KICA, and (c) KFD

These kernels are applied to three feature 

extraction methods, KPCA, KFD, and KICA. 

Although eRBF is not implemented via kernel-trick, 

the main characteristics of the feature extraction 

methods, such as eigenvalue regularization for 

whitening the within-class scatter in KFD
[29] and the 

structure of KPCA+ICA in KICA
[30], are preserved. 

We performed the experiments varying the 

parameters of the kernels. In RBF, we varied   

logarithmically ranging from 10-7 to 10-2, while, in 

eRBF, we also varied the number of within-class 

neighbors, k, and the best performance is reported 

for each setting of  . In polynomial, for simplicity, 

we fixed the bias parameter, , and the degree 

parameter, , to one and three respectively, and 

varied only the weight parameter, , logarithmically 

ranging from 10-8 to 103.

Experimental results on FERET and AR varying 

the kernel parameters are plotted in Fig. 4 and 5, 

respectively. The best results and corresponding 

parameter settings are also summarized in Table 1. 

We can see that the trajectories of EER graphs of 

RBF and eRBF show similar tendencies as the 

kernel parameter   varies. However, eRBF consistently 

outperforms RBF in all parameter settings. 

Especially, KPCA gains remarkable performance 

improvement with eRBF. This is because the eRBF 

has discriminative power which is obtained by 

reducing the variance between the connected 

within-class samples in its response. Another 

noteworthy observation is the performance gain in 

KFD. Since KFD is based on the Fisher's 

discriminant analysis, the discriminating nature of 

eRBF is not enough to explain the performance 

gain. This performance improvement can be 

attributed to the preserved local structure. This is 

especially true when there are fewer within-class 

samples, noting that the average number of samples 

per class are respectively 6.6 and 14 in the FERET 

and the AR experiments. Since KFD assumes 

normal and identical within-class scatter, it cannot 

fully explore the discriminancy of the data only with 
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FERET AR

RBF Polynomial eRBF RBF Polynomial eRBF

KPCA
20.9224 %

(σ =1e-3.5)

20.9787 %

(a = 1e-4)

17.6651 %

(σ =1e-3.5, k = 1)

29.2301 %

(σ =1e-7)

29.2288 %

(a = 1e-8)

15.7538 %

(σ =1e-4.5, k = 1)

KICA
13.0377 %

(σ =1e-4)

12.9965 %

(a=1e-4)

12.7561 %

(σ =1e-3.5, k = 2)

8.9715 %

(σ =1e-7)

9.0182 %

(a = 1e-6)

8.7535 %

(σ =1e-6.5, k = 2)

KFD
13.2407 %

(σ =1e-4.5)

13.4041 %

(a=1e-5)

10.6937 %

(σ =1e-3.5, k = 3)

8.4663 %

(σ =1e-3)

9.3197 %

(a = 1e-2)

8.3021 %

(σ =1e-3, k = 2)

Table 1. Best EERs and parameter settings thereof

RBF. Meanwhile, by capturing the possible local 

variances based on the concept of NFL, eRBF 

performs better in classifying heteroscedastic face 

data.

Ⅳ. Conclusion

In this paper, we presented a novel kernel 

function, eRBF, for application in facial feature 

extraction. The proposed eRBF has several 

advantages over the conventional RBF: 

It tries to capture possible variations based on the 

concept of NFL cultivating the discriminability.

Non-identically designed kernel functions better 

preserve detailed local structure of data allowing 

more adaptable feature extraction from hetero-

scedastic data.

The empirical experiments showed our method 

outperforms other kernel functions evidencing its 

claimed effectiveness and generalizability in small 

sample size situations.
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