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요   약

본 논문에서는 사용자들 간의 간섭이 존재하는 무선망에서 상하향 링크의 수율 최대화를 동시에 고려한다. 상

향 링크에서는 라그랑지안 완화기법에 기반으로 하는 분산적이고 반복적인 알고리즘을 제안하다. 상향 링크에서의 

라그랑지 곱수와 네트워크 쌍대성 성질을 이용하여 채널 이득과 최대 전력 제약이 상향 링크와 동일한 듀얼 하향 

링크에서의 수율 최대화를 얻을 수 있다. 본 논문에서 증명한 네트워크 쌍대성 성질은 기존의 연구에 비해 보다 

일반적인 형태를 가진다. 또한, 모의실험 결과는 채널의 상관 계수가 ∈ 일 때, 상하향 링크에서 제안된 

기법들이 각각 최적값에 근접하다는 것을 보여준다. 반면에 채널의 상관 계수가 낮을 때 (∈), 하향 링크에

서의 성능 열화를 관찰할 수 있다. 네트워크 쌍대성 성질은 상향 링크에 비해 채널 이득과 최대 전력 제약이 다

른 실제 하향 링크로 확장된다. 이러한 쌍대성 성질에 기반으로 하는 기법은 실제 하향 링크에서도 충분히 적용

될 수 있음이 모의실험 결과로 보여진다. 기존에 제안된 알고리즘의 복잡도를 고려하였을 때, 본 논문의 결과는 

일반화된 네트워크 쌍대성 성질의 성능과 실제 적용면에서 상당히 유용하다고 할 수 있다.

Key Words : Network Duality, Power Control, Optimization, Interference Channel, Lagrangian

ABSTRACT

We consider the throughput-maximization problem for both the up- and downlink in a wireless network with 

interference channels. For this purpose, we design an iterative and distributive uplink algorithm based on 

Lagrangian relaxation. Using the uplink power prices and network duality, we achieve throughput-maximization in 

the dual downlink that has a symmetric channel and an equal power budget compared to the uplink. The 

network duality we prove here is a generalized version of previous research [10], [11]. Computational tests show 

that the performance of the up- and downlink throughput for our algorithms is close to the optimal value for the 

channel orthogonality factor, ∈. On the other hand, when the channels are slightly orthogonal 

(∈), we observe some throughput degradation in the downlink. We have extended our analysis to the 

real downlink that has a nonsymmetric channel and an unequal power budget compared to the uplink. It is 
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shown that the modified duality-based approach is thoroughly applied to the real downlink. Considering the 

complexity of the algorithms in [6] and [18], we conclude that these results are quite encouraging in terms of 

both performance and practical applicability of the generalized duality theorem.

Ⅰ. 서  론

As wireless systems increasingly provide data 

services, intensive study has been done in rate 

control and packet scheduling, which are usually 

combined with link adaptation in the physical 

layer. In particular, there has been significant 

progress in the downlink side, of which excellent 

examples are CDMA-HDR [1] and HSDPA [2] 

[3]. On the other hand, research in the uplink is 

unsatisfactory, in the sense that we cannot find 

any practical implementation except for HSUPA 

[4]. One major reason for this is that it is rather 

difficult to coordinate multiple transmitters 

(mobiles) in an optimal way, even if there are 

theoretical results on uplink rate control [5]-[10]. 

Throughout this paper, our objective is to 

maximize the uplink throughput, iteratively and 

distributively. For this purpose, we have applied 

the Lagrangian relaxation (LR) technique [11] and 

have developed a heuristic algorithm. Applying 

LR to the uplink power/rate control was first 

carried out by Kim et al [5]. However, the 

algorithm provided in [5] considered that the rate 

of each mobile is a linear function of the 

signal-to-interference-plus-noise ratio (SINR). In 

[6]-[7], the authors considered the uplink 

throughput-maximization problem, in which the 

rate of each mobile is chosen to be a logarithmic 

function of the SINR, i.e., Shannon capacity. 

However, the algorithms proposed in [6]-[7] have 

a centralized property that causes high complexity 

for the base station to perform power/rate control. 

In [8], an uplink power control problem was 

formulated as a non-cooperative game where users 

aim selfishly at maximizing their utility-based 

performance. The existence of a Nash equilibrium 

point of each proposed game was proven, but 

such a nash equilibrium point may not achieve 

the throughput maximization for the uplink 

system. In [9], the problem of sum rate 

maximization was solved approximating the rate 

funcntion as log(SINR). Although this leads 

sum-rate maximization problem to a convex 

problem, the approximation can be seriously 

erroneous under low SINRs. The authors in [10] 

also consider the power optimization problem 

maximizing the sum rate, but the assumption that 

the interfering links are symmetric is critical. 

When referring to the duality in the wireless 

network, we may naturally focus on the two 

communication directions: uplink and downlink. 

For this issue, there are two stimulating papers. 

The achievable capacity region of the uplink of a 

snapshot wireless network is mostly determined by 

the maximum transmittable power of each mobile. 

An interesting experiment is to vary such 

maximum transmittable power of each mobile 

while the total transmission power of all the 

mobiles is fixed to a constant, say , and to see 

how the capacity region varies. In [12], the 

authors showed that the trace of the capacity 

region of the uplink (i.e., multiple access channel, 

MAC channel) collectively constitutes the capacity 

region of the downlink (i.e., broadcasting channel, 

BC channel), where the total power of the base 

station has an upper limit of  . There are two 

important assumptions in [12]. The first 

assumption is that the channel gains are 

symmetric between the up- and downlink. 

Secondly, the authors in [12] assume successive 

interference cancelation (SIC) in the receivers of 

mobiles and the base station, and the order of 

interference cancelation is completely reversed in 

the up- and downlink. A similar network duality 

is also presented by [13], in which spectral radius 

analysis was used. In [13], their analysis is rather 

general in the sense that the SIC was not 

assumed. However, what is missing in the 

analysis is that they did not consider the upper 

www.dbpia.co.kr



한국통신학회논문지 '11-11 Vol. 36 No. 11

880

bound of the transmission power in the uplink.

The main purpose of this paper is threefold. 

First, we introduce an iterative and distributed 

uplink throughput-maximization algorithm which 

was proposed in our past work [14]. In this 

paper, we additionally prove the convergence of 

the algorithm. Second, we explain the duality 

properties for general wireless networks in [14]. 

This generalization is related to the question of 

how the duality theorem holds when the 

assumptions of SIC [12] and unlimited uplink 

power budget [13] are removed. We have proven 

that the duality between the MAC and BC 

channels still holds under such general conditions. 

Based on this, we move to the design of 

downlink throughput-maximization, which can be 

established from the uplink Lagrange multipliers 

(i.e., power price or power sensitivity) on each 

mobile and applying the network duality theorem. 

Third, we compensate the network duality gap in 

the downlink when there exist nonsymmetric 

channels and different power budgets between the 

up- and downlink. We have compared the 

performance of the up- and downlink throughput 

of our algorithms with that of [6] (uplink) and 

[15] (downlink), especially when the network 

duality gap exists or not in the downlink. The 

results are quite encouraging in terms of both 

performance and practical applicability of the 

generalized duality theorem. 

The remainder of this paper is organized as 

follows. In the next section, we describe the 

problem definition of the uplink throughput- 

maximization and apply LR to this problem. In 

Section Ⅲ, we present a distributed uplink power 

control algorithm and prove the convergence of 

this algorithm. In Section Ⅳ, we prove the 

generalized network duality theorem and apply it 

to the downlink throughput-maximization problem. 

In Section Ⅴ, we introduce the network duality 

gap. The numerical results are given in Section 

Ⅵ, which is followed by the concluding remarks 

of Section Ⅶ. 

Ⅱ. System Model and Lagrangian 
Relaxation

2.1 System Model 
Consider an isolated single cell of a cellular 

radio system where N mobiles are active. In the 

uplink, each mobile i (≤ ≤) can transmit 

with power ≤  ≤
 , where   is the 

maximum transmittable power of mobile i. We 

consider a short time interval such that the link 

gain between each mobile i and the base station 

is stationary, symmetric and given by   

(≤ ≤). The received signal-to-interference- 

plus-noise ratio (SINR) of mobile i, is defined as: 

  


≠



 


   ⋯

(1)

where the vector    denotes the 

N-dimensional power vector and the positive value 

  is background noise. The quantity ∈ is 

the normalized cross-correlation between  and 

  at the receiver of the base station; that is the 

effective fraction of the received signal power 

from transmitter j that contributes to the 

interference experienced by mobile i. For example 

in a DS-CDMA system, the spreading sequences 

can be chosen to be orthogonal,    for ≠, 

but in reality some positive correlation will occur 

due to multipath propagation. Throughout the 

paper, we exclude the case of no intracell 

interference, which would make intracell 

coordination unnecessary.

The uplink throughput-maximization problem 

can be formulated as the following problem:

Problem (A):

  




   (2) 
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   ≤  ≤
   ⋯ (3)

where the function      

defines the one-to-one relationship between an 

SINR and a data rate. In this paper, we choose 

the function  to be the Shannon capacity, an 

upper-bound on the maximum amount of 

error-free information that can be transmitted over 

a communication link using an appropriate coding. 

Without loss of generality, we assume that the 

base of the logarithm function in the channel 

capacity is the natural number. 

2.2 Lagrangian Relaxation
Introducing nonnegative Lagrange multipliers 

∈, we can form the following Lagrangian 

function of Problem (A):

 




 





 (4)

Then a Lagrangian relaxation problem for a 

given   is given by:

 ≥ (5)

of which the Lagrangian dual problem is:

 ≥ (6)

The objective function in Problem (A) is 

neither convex nor concave with respect to   

[6], [15]. Therefore, we cannot say that the strong 

duality theorem ( ) holds [16], and it is 

believed that   .

Let us now focus on the Lagrangian relaxation 

problem (5). The rate of mobile i depends on not 

only its own power allocation but also the power 

allocations of all the other mobiles. Power 

increment of mobile i increases its own rate, 

while decreasing the rate of all the others due to 

the interference. Thus the first order derivative of 

the Lagrangian function, with respect to  is the 

sum of the two:

  


 

 
  


  


 (7)






 
  




  




 (8)

where the term   
≠



 denotes the 

interference perceived by mobile i. Equation (7) is 

the derivative of mobile i's rate with respect to 

 and Equation (8) denotes that of mobile j's 

rate. Then the Karush-Kuhn-Tucker necessary 

condition of the problem (5) is reduced to finding 

the nonnegative power value that makes the sum 

of (7) and (8) equal to :


 








  





 (9)

where 
 denotes the (local) optimal power of 

mobile i for the problem (5) and the function 

 . In (9), the (local) optimal 

power is determined by two control variables, i.e., 

power price and system price. The power price of 

mobile i represented by the Lagrange multiplier, 

, is defined as the penalty that mobile i has to 

pay for unit power increment. The system price is 

defined as follows:

  
≠



 




 (10)

The system price of mobile i,  means the 

effect of interference caused by the transmission 

of mobile i to the overall system. Therefore, the 

transmission power is inversely proportional to the 

sum of both the power price and the system 

price. The updates of both the power and system 

price are described in the next section.
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Ⅲ. Distributed Uplink Power Control 
Algorithm

Our Distributed Uplink Power Control (DUPC) 

algorithm consists of iterations of three major 

steps as follows:

Step 0. Initialization

Set    and arbitrary nonnegative initial 

values of 

 and 


.

Step 1. Power update


 














 





 (11)

where 
 

 is a virtual transmission power of 

mobile i.

 Step 2. Power price update


   ∙

 

 (12)

where  denotes a sequence of positive step 

sizes.

Step 3. Power truncate


 

 (13)

where 
  is an actual transmission power of 

mobile i.

Step 4. Repetition

Set    and go to Step 1.

The base station determines the system price of 

each mobile by calculating the received 

information for a given time slot. In Equation 

(11), the system price of mobile i in the k-th 

time slot is calculated as: 




≠



 










 (14)

where 
 

≠




  is the intra-cell 

interference at the base station caused by mobile 

j's actual transmission. In the next time slot, each 

mobile is informed of the system price by the 

base station.

The power price,  is required to determine 

the transmission power of each mobile. The 

projected subgradient method is known to generate 

solutions converging to optimal 
 of the dual 

problem (6) (see [17] and references therein). In 

the subgradient method, a step-size sequence  

is needed to update   to the negative subgradient 

direction for the minimization problem (6), more 

specifically Step 2. When the norm of the 

subgradient is bounded, the projected subgradient 

update is guaranteed to converge to the optimal 

dual solution,   for the problem (6) as long 

as 


∞

 ∞ and lim
→∞
  [17]. Our update 

algorithm selects the following choice [18]:

 


 (15)

where   is some positive constant.

Finally, we need to modify the iterative 

algorithm to take into account the presence of the 

primal constraints, i.e.,  ≤
 . Step 3 of DUPC 

introduces a projection method [19]. The projected 

algorithm selects the “closest” point in the primal 

constraint, when the virtual transmission power is 

out of the primal constraint. The convergence of 

DUPC is described as the following proposition.

Proposition 1: Assume that there is only one 

mobile updating its power according to (11) at 

each iteration. Then, for arbitrary nonnegative 

initial values of power, DUPC guarantees 

convergence to a unique equilibrium point.
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Proof: The objective function (2) can be 

decomposed into two components according to 

each mobile i, i.e., the rate of mobile i and the 

sum rate of all the others. The rate of mobile i 

is a monotonically increasing and concave 

function with respect to the transmission power of 

mobile i, , while the sum rate of all the others 

is a monotonically decreasing and convex function 

of . This implies that the Concave-Convex 

Procedure (CCCP) can be applied to the problem 

(5) [20]. The power update procedure (11) is in 

fact a CCCP algorithm given by:




 









 
≠





 


 (16)

where   represents the power vector except 

for the power of mobile i, i.e., 

  ⋯⋯ . It is assumed 

that   is fixed during the power update of 

mobile i. The left hand side of Equation (16) is 

the concave part of the Lagrangian function (4), 

while the right hand side is the convex part. In 

[20], Theorem 2 shows that the CCCP algorithm 

is guaranteed to monotonically increase the 

objective function that is composed of a concave 

part and a convex part and hence to converge to 

a maximum or saddle point of the objective 

function. In other words, the iterative CCCP 

algorithm (16) guarantees that the objective 

function monotonically increases as follows:






  

≤




 


 
≠






  




 (17)

There is slight difference between (11) and 

(16). In (11), there is a projection procedure that 

sets the negative power value to zero. However, 

this difference will not make any change in our 

proof (i.e., the monotonicity of (11)). Assume 

now at iteration   , mobile j updates its 

power according to (11). Using this one-by-one 

update, we approach to the (local) optimal 

solution of the function (4), if the objective 

function is upper-bounded (which is our case).

So far, we have assumed that the power price 

of each mobile,   is fixed to a constant value. 

However, it is varying according to (12). Since 

the step size  of the update procedure (12) 

converges to zero, the power price of each 

mobile converges to a constant value after some 

iterations. So, the assumption of constant power 

price is reasonable.

In Step 3 of DUPC, the transmission power of 

each mobile is constrained by the maximum 

transmittable power in the uplink. Since the 

projected algorithm selects the “closest” point in 

the power truncation, the actual transmission 

power is the most adjacent value of the (local) 

optimal power to the problem (5) in the feasible 

region. Therefore, the monotonically increasing 

property of the CCCP algorithm is not changed, 

and the above convergence proof is well defined 

regardless of power truncation. 

The above proposition says that DUPC 

converges to a near optimal power vector of 

Problem (A), only if the power update of each 

mobile is done in the one-by-one fashion (i.e., 

one mobile per slot). One-by-one assumption is 

rather strong and may not be true in real 

situations. The question is how the convergence 

of DUPC when multiple mobiles update their 

power simultaneously. In Section Ⅵ, we 

numerically show the convergence of this case, 

answering this question.

 Practical implementation of DUPC can be 

done for both the base station and mobiles, which 

can be described as follows:
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BS Algorithm

Step 0. Set    .

Step 1. Using the received information, estimate 

the system price 
, interference 

 and channel 

gain  for each mobile i.

Step 2. The above feedback is informed to 

each mobile.

Step 3. Set      and go to Step 1.

MS Algorithm For each mobile i,   ⋯

Step 0. Set     and arbitrary nonnegative 

initial values of 

 and 


.

Step 1. Assume that the system price 

, 

interference 

 and channel gain  are informed 

from the base station.

Step 2. Power update : Select the transmission 

power, 
 using (11) and (13).

Step 3. Power price update : Update 
 

using (12).

Step 4. Set      and go to Step 1.

Ⅳ. Downlink Throughput -Maximization 
Using the Up- and Downlink Duality

In this section, we introduce our up- and 

downlink duality theorem that establishes a basis 

for the downlink throughput-maximization problem 

given by:

Problem (B):

 




   (18)

  
 



 ≤
 (19)

where the vector    denotes the 

N-dimensional power vector of the downlink and 

the function  is the same as in Problem (A). 

The difference between Problems (A) and (B) is 

in the power constraints. In the uplink case (A), 

the transmission power of each mobile is 

individually constrained, i.e.,  ≤
 ,   ⋯. 

On the other hand, the sum of the transmission 

power is constrained in the downlink problem 

(B), i.e., 




 ≤
 .

When the channels do not change too rapidly, 

link gains on the up- and downlink are identical. 

If we assume that the orthogonality factor and 

thermal noise in both systems are the same, the 

SINR received by mobile i in the downlink is 

defined by:

  
 
≠



 


   ⋯

 (20)

The power prices of DUPC give a hint about 

the optimal transmission power of Problem (B) 

based on the up- and downlink duality.

Proposition 2: If we assume that the sum of 

the maximum transmittable power in the uplink is 

the same as the power constraint of the downlink, 

i.e., 




 , the extreme point of the uplink 

rate-region traces a boundary point of the 

downlink rate-region by varying the maximum 

transmittable power of each mobile in the uplink.

Proof: Solving (1) for , we have [21]:

 











∙ 



 (21)
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for   ⋯ In the above, since ≤  ≤
 , 

the SINR  varies according to this power 

range. Noting that the instantaneous rate of 

mobile i is a function of , we can draw the 

rate region of mobile i within ≤  ≤
 . 

Intersections of such rates for each mobile 

composes the feasible rate region of the uplink 

Problem (A).

When each mobile transmits with the maximum 

power in the uplink, i.e.,  
 ,   ⋯, 

the SINR received by mobile i is denoted as 


  

and the instantaneous rate lies on an extreme 

point of the uplink rate-region. The maximum 

transmission power is denoted as follows:




 










∙



 (22)

where 














 has a one-to-one 

relationship with the rate of mobile i in the 

uplink.

 Moving to the downlink case, we have [15]:

 
 



 


 








  






∙



 (23)

With the constraint of 




 ≤
 , we can draw 

the rate region of the downlink Problem (B) 

using the above equation. If the sum of each 

mobile power is the same as the power 

constraint, i.e., 




 
 , the instantaneous rate 

lies on a boundary point of the downlink 

rate-region. When the SINR received by mobile i 

on the boundary point is defined as 


 , the 

power constraint of the downlink is denoted as 

follows:

















∙



  (24)

where 














 has a one-to-one 

relationship with the rate of mobile i in the 

downlink.

If we assume that the sum of the maximum 

power that can be transmitted by each mobile in 

the uplink is the same as the power constraint of 

the downlink, i.e., 




 , the following 

condition has to be satisfied by using Equations 

(22) and (24):

















∙



















∙



 (25)

From the above condition, 


  and 


 , 

which have one-to-one relationships with the 

extreme point in the uplink or a boundary point 

in the downlink, are equal. Therefore, the extreme 

point of the uplink rate-region lies on a boundary 

point of the downlink rate-region. If we vary the 

maximum transmittable power of each mobile, 

while the total transmission power of all the 

mobiles is fixed to a constant,  , the boundary 

of the downlink rate-region is obtained with the 

set of extreme points in the uplink.

As mentioned, the Lagrange multipliers,  , can 

be interpreted as power prices of mobile i. If we 

have   , the power constraint   is more 

restrictive than  , that is, increasing   while 

decreasing   by the same amount would lead to 

an increase in the sum rate of the uplink. On the 

other hand, if all power prices are equal, each 

power constraint is equally hard and no tradeoff 
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Fig. 1. Rate region of the up- and downlink system. The 
inner solid line represents the instantaneous rates of two 
mobiles in the uplink, while the outer solid line represents 
those in the downlink. The dots represent the iterative 
sequences from the DUPC algorithm

of power constraint between different mobiles 

would increase the sum rate.

In [12], the authors introduced channel scaling 

to force the power prices to be equal. Channel 

scaling is used to derive that the capacity region 

of the uplink can be characterized in terms of the 

capacity region of the dual downlink. Here, the 

dual downlink means that the channel gains are 

symmetric between the up- and downlink and the 

power constraint is the same as the sum of 

uplink power constraints. In channel scaling, the 

channel gain is scaled by a component of the 

positive scaling vector,    , such as  . If 

  is the power price of mobile i for the 

unscaled uplink, then   is the power price for 

the uplink scaled by    . Therefore, we can 

scale the channel appropriately so that   are 

equal for all mobile i as follows:

   ⋯ (26)

The scaling of the channel and the power 

constraint clearly negate each other in the uplink. 

In other words, the power constraint of each 

mobile is reciprocally scaled by a component of 

the scaling vector. In channel scaling, the sum of 

the transformed power constraint has to be held 

to a constant as follows:







⋯






 (27)

The uplink power constraints that are reciprocally 

scaled in Equation (27), are the same as the 

downlink transmission powers that maximize the 

sum rate in the dual downlink. If we assume 






 , every extreme point of the uplink 

rate-region scaled by some scaling vector can be 

shown to be on a boundary of the dual downlink 

rate-region by Proposition 2. When we exactly 

select a scaling vector,     to satisfy Equations 

(26) and (27), each scaled power constraint, 

 , can maximize the sum rate of the dual 

downlink. Using Equations (26) and (27), the 

transmission powers of the dual downlink are 

calculated as follows:

  


   







 (28)

Example 1: For two mobiles, we can draw the 

up- and dual downlink rate region as in Figure 1. 

We apply the up- and downlink duality to the 

downlink power allocation problem. As shown in 

Figure 1, the simultaneous transmission of two 

mobiles is the optimal strategy in the uplink to 

maximize the total throughput. DUPC has iterative 

points that are represented by the dots. It is 

shown that the sequence of these points converges 

into the optimal point that maximizes the sum 

rate of two mobiles in the uplink. By Equation 

(28), we can find the optimal transmission power 

of two mobiles in the dual downlink for a given 

optimal power price of the uplink. The throughput- 

maximization point of the dual downlink is 

represented by the diamond point in Figure 1.

Ⅴ. Network Duality Gap

So far, we assume that the channels between 

the up- and downlink are symmetric and the sum 
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of the uplink power constraints is exactly the 

same as the downlink power constraint. Under 

this assumption, the downlink based on the up- 

and downlink duality property is defined as the 

dual downlink. The transmission powers of the 

dual downlink are obtained by using the channel 

scaling method (28). However, the downlink in 

the practical system has a nonsymmetric channel 

and an unequal power budget compared to the 

uplink. In this paper, it is defined as the real 

downlink, in which the channel scaling method 

(28) cannot maximize the throughput. We denote 

the throughput difference between the dual and 

real downlink as network duality gap. The 

network duality gap is determined by two factors, 

i.e., nonsymmetric channels and different power 

budgets.

When the sum of the uplink power constraints 

is not exactly the same as the downlink power 

constraint, the extreme point of the uplink 

rate-region does not lie on a boundary point of 

the downlink rate-region. Therefore, we have to 

compensate the network duality gap to obtain the 

exact transmission powers of the real downlink. If 

we assume that 



 
 ,   is a positive 

constant value that represents the difference of 

the power budgets between the up- and downlink. 

We simply substitute 



  with   in Equation 

(27) to compensate the network duality gap as 

follows:







⋯


  (29)

We denote the up- and downlink channel gains 

of mobile i as 
 and 

, respectively. When 

the channels between the up- and downlink are 

nonsymmetric, i.e., 
≠

, we have to force 

the power prices to be equal considering the 

network duality gap. Therefore, we appropriately 

select a scaling vector as follows:








 






⋯






 (30)

If we assume that the channels are symmetric 

between the up- and downlink, i.e. 
  

, the 

above condition (30) is exactly equal to (26) of 

the dual downlink. We have multiplied the scaled 

power price of each mobile i by 






 to 

compensate the difference of channel gains 

between the up- and downlink. If 






 , then 

the downlink power of  for the real downlink 

will be larger than the one for the dual downlink 

in proportional to 






.

Due to the network duality gap, the component 

of channel scaling vector,    is changed 

by using Equations (29) and (30) as follows:

 









(31)

where  






 denotes the ratio of the 

channel gains between the up- and downlink. 

Using the modified channel scaling vector (31), 

we can calculate the transmission powers of the 

real downlink, not the dual downlink. In the next 

section, we apply this modified channel scaling 

method (31) to the downlink that has a different 

channel gain and power budget compared to the 

uplink. We will numerically compare the 

performance difference, when the network duality 

gap exists or not.

Ⅵ. Numerical Results

For simplicity, we assume that      for 

all i and j. We provide some simulation results to 

illustrate the performance of DUPC. The 
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Fig. 2. Convergence of the power. Each curve corresponds 
to the power or the price for each mobile
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Fig. 3. Convergence of the power price (Lagragian 
multiplier). Each curve corresponds to the power or the 
price for each mobile

simulation environment is considered to be an 

isolated single cell of a DS-CDMA system. The 

cell has a radius of 1Km. For a given instance, a 

total of 10 mobiles are generated, the locations of 

which are randomly distributed over the cell. The 

link gain  is modeled as   ∙ 
 

, 

where  is the shadow fading factor and  is 

the distance between the base station and mobile 

i. The log-normally distributed  is generated 

according to      dB and      dB. 

The power constraint of each mobile is the same 

as 30 dBm, and the thermal noise power is –70 

dBm.

Firstly, we consider the orthogonality factor, 

  . With 5 mobiles deployed, Figures 2 and 

3 respectively show the convergence of the power 

and the power price (Lagrange multiplier) for 

each mobile under the DUPC algorithm, starting 

from arbitrary nonnegative initial values. Here, we 

select     for the step size in (15). For a 

given instance, Figure 2 describes that the 

opportunistic transmission in which only the best 

mobile transmits, is the optimal strategy in the 

uplink. When one mobile transmits with the 

maximum transmittable power, the optimal power 

prices of the others have zero values. By 

Equation (28), all mobiles except the best mobile 

have zero power in the downlink. 

Therefore, the mobile that has the best channel 

gain is the only one that transmits in the 

downlink according to the up- and downlink 

duality. Unlike Figures 2 and 3, there is a 

scenario where the simultaneous transmission of 

some mobiles is the optimal strategy in the 

uplink. In this case, the simultaneous transmission 

of some weak mobiles has better performance 

than the opportunistic transmission due to large 

interference from the best gain mobile. If we 

determine the allocated downlink powers by 

Equation (28), the simultaneous transmission of 

some weak mobiles is also the strategy in the 

downlink, even if the power allocation is different 

from the uplink.

Next, we compare the performance of DUPC 

with that of power allocation proposed by 

Kumaran and Quian [6]. The Kumaran and Quian 

algorithm, the K&Q algorithm for short, has the 

property that each transmitting mobile transmits at 

the full power, i.e.,    for some subset   of 

the mobiles and  
  for the complementary 

set  . This algorithm maximizes the sum rate of 

all mobiles, only if the orthogonality factor is 

∈. However, it is a centralized algorithm 

that determines the optimal transmitting mobile set 

from the full enumeration of all mobiles. As the 

number of mobiles increases, the complexity 

grows dramatically.
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Fig. 4. Comparison of the Kumaran and Quian algorithm 
and DUPC algorithm in the uplink

Fig. 5. Comparison of MPA-1 algorithm and duality-based 
algorithm in the dual downlink

Fig. 6. Comparison of MPA-1 algorithm and modified 
duality-based algorithm in the real downlink

We use the spectral efficiency as a 

performance measure, i.e., Shannon capacity with 

normalized bandwidth. We have performed 20,000 

simulations to achieve the average spectral 

efficiency in Figures 4-6. For a given 

orthogonality factor, Figure 4 describes the 

difference between the spectral efficiency of the 

K&Q algorithm andDUPC. DUPC has about 97% 

performance compared with the K&Q algorithm in 

the uplink. Therefore, it has not only a 

“distributive” advantage, but it also has almost the 

same performance compared with the optimal 

value for the orthogonality factor ∈. As 

we mentioned earlier in Section Ⅱ, the objective 

function of the uplink Problem (A) is neither 

convex nor concave, and finding the global 

optimal solution requires full enumeration of all 

local optimal solutions, which is of combinatorial 

behavior. Therefore it is rather hopeless to try to 

find the global optimal solution in a reasonable 

amount of time. We numerically show that DUPC 

converges to a unique point. The convergence 

point may not exactly coincide with one of the 

local optimal solutions due to violation of the 

Karush-Kuhn-Tucker necessary condition of 

Problem (A). Nevertheless, DUPC has quite an 

encouraging result, as shown in Figure 4.

Based on the up- and downlink duality, we can 

determine the transmission power allocated in the 

dual downlink, which has a symmetric channel 

and an equal power budget compared to the 

uplink. This duality-based algorithm does not need 

another separate power allocation algorithm in the 

downlink, but directly calculates the transmission 

power by using the power prices from the uplink. 

We compare the performance of the duality-based 

algorithm with the MPA-1 algorithm, an efficient 

heuristic algorithm proposed in [15]. In Figure 5, 

our duality-based algorithm compared with the 

MPA-1 algorithm has about 96% performance for 

the orthogonality factor ∈, and about 

93% performance for ∈. Therefore, the 

duality-based algorithm has not only a 

“impleness”, but it also has almost the same 

performance for the orthogonality factor 

∈. Some throughput degradation under 

∈ shows that inaccurate power prices 

will decrease the system throughput more than in 
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the case of ∈.
Finally, we consider the real downlink that has 

a nonsymmetric channel and an unequal power 

budget compared to the uplink. The power 

constraint of the real downlink is set to as 2 

times as the sum of 10 uplink power constraints 

for the simulation. The shadow fading factor of 

channel gain in the real downlink is newly 

generated, while the location of each mobile is 

fixed to that in the uplink. In Section Ⅴ, we 

have established the modified channel scaling 

method (31) to compensate the network duality 

gap. Using this method, we can find the 

transmission power allocated in the real downlink. 

Figure 6 shows that the duality-based algorithm 

has about 90% performance compared to the 

MPA-1 algorithm in the real downlink. Since the 

modified channel scaling method (31) have been 

developed as a heuristic algorithm, the modified 

algorithm has more performance gap compared to 

MPA-1 algorithm in the real downlink than the 

dual downlink as shown in Figures 5 and 6. 

However, it is a slight performance gap of about 

4%.

Ⅶ. Conclusions

In this paper, we considered throughput- 

maximization problems for both the up- and 

downlink by choosing a feasible power allocation 

of each mobile. To approach the optimal solution, 

we proposed a DUPC algorithm in the uplink. 

DUPC has about 97% performance compared with 

the K&Q algorithm, while each mobile 

respectively updates its transmission power based 

on the measurement feedback from the base 

station.

We extended the duality properties to the 

general wireless network. The up- and downlink 

duality was shown in a more realistic setting, in 

which the assumptions of SIC and unlimited 

uplink power budget are removed. Based on this 

up- and downlink duality, we solved the 

throughput-maximization problem in the dual 

downlink that has a symmetric channel and an 

equal power budget compared to the uplink. 

Compared with the MPA-1 algorithm, our 

duality-based downlink algorithm has about 96% 

performance for the orthogonality factor 

∈   without any additional power 

allocation scheme in the dual downlink. 

Additionally, we developed the modified channel 

scaling method applied to the real downlink that 

has a nonsymmetric channel and an unequal 

power budget compared to the uplink. It is shown 

that the modified algorithm is thoroughly applied 

to the real downlink. From the numerical results, 

it is found that the proposed throughput- 

maximization algorithm for the orthogonality 

factor ∈   is an attractive method that 

not only has almost the same performance as that 

of the optimal algorithm, but also has the 

advantages of distributiveness and simpleness.
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