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ABSTRACT

The constant modulus algorithm (CMA) widely used in blind equalization applications minimizes the averaged 

power of constant modulus error (CME) defined as the difference between an instant output power and a 

constant modulus. In this paper, a decision feedback version of the linear blind algorithm based on maximization 

of the zero-error probability for CME is proposed. The Gaussian kernel of the maximum zero-error criterion is 

analyzed to have the property to cut out excessive CMEs that may be induced from severely distorted channel 

characteristics. Decision feedback approach to the maximum zero-error criterion for CME is developed based on 

the characteristic that the Gaussian kernel suppresses the outliers and this prevents error propagation to some 

extent. Compared to the linear algorithm based on maximum zero-error probability for CME in the simulation of 

blind equalization environments, the proposed decision feedback version has superior performance enhancement 

particularly in cases of severe channel distortions. 
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Ⅰ. Introduction

Blind equalizers are commonly used in many 

communication areas to cancel intersymbol 

interferences (ISI) from channel distortions because 

of the advantage that they do not require any 

training symbols
[1,2]. Most blind equalizer algorithms 

use mean-square-error (MSE) criterion for weight- 

adjustment. One of the well known blind algorithms 

is the constant modulus algorithm (CMA) that 

minimizes the statistical average of the power of 

constant modulus error (CME), which is defined as 

the difference between an instant equalizer output 

power and a constant modulus
[3]. Recently, instead 

of being based on MSE criterion for blind equalizer 

algorithms, a new constant modulus criterion that 

maximizes the probability that equalizer output 

power is equal to the constant modulus of the 

transmitted symbols has been proposed
[4]. The 

probability of CME is obtained from CME samples 

directly by means of Parzen window estimation 

method[5], which is one of the bases of 

information-theoretic learning (ITL) introduced by 

Princepe[6]. The ITL methods have been developed 

based on a combination of Parzen probability- 

density-function (PDF) estimator and a procedure to 

compute entropy
[7] and have shown superior 

performance as an alternative to MSE in supervised 

adaptive systems
[8]. For unsupervised equalization, 

the researchers in the work [4] have also developed 

a new blind algorithm by applying the gradient 

ascent method to maximize the criterion of 

zero-error probability for CME. The proposed 

algorithm has shown a faster speed of convergence 

and lower steady-state MSE performance in 

comparison with CMA. The blind algorithm, 

however, is based on a linear combiner structure so 

that it cannot counteract ISI from worse channel 

environments. In this paper, in order to cope with 

severe channel distortions in blind equalization 
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systems, we propose to employ a decision feedback 

structure based on the advantages from the criterion 

of zero-error probability for constant modulus error.  

Ⅱ. Constant Modulus Error for Blind 
Equalization

In the linear equalizer structure of a tapped delay 

line (TDL), the output at symbol time k can be 

expressed as Nk
T
kky ,XW=  where the input vector 

and adjustable weight vector are defined as 
T

NkkkkNk xxxx ],...,,,[ 121, +−−−=X and ],...,,,[ 1,2,1,0, −= Nkkkk
T
k wwwwW , 

respectively. In the blind equalization algorithm, 

CMA, the power of CME 2
2 Rye kCME −=  is to be 

minimized as

])[(][ 2
2

22 RyEeEP kCMECMA −== , (1)

where ][/][ 24
2 kk dEdER =  and kd  is the transmitted 

symbol at time k.    

By differentiating PCMA dropping the expectation 

operation and using the steepest descent method, we 

obtain the following CMA
[1] for adjusting the blind 

equalizer weights:

)(2 2
2

,1 Ryy kkNkCMAkk −⋅⋅⋅−= ∗
+ XWW μ (2)

where μCMA is the step-size parameter. We can 

notice in (2) that CME makes a direct impact on the 

weight adjustment, which means that any excessive 

CME from severe channel distortions can bring 

about a catastrophic failure to the blind equalizer.

Ⅲ. Maximum Zero-error Probability 
Criterion for Constant Modulus Error 

To create a concentration of CME near zero, the 

CMA uses MSE criterion. Instead of relying on 

MSE criterion, we can deal with an information 

theoretic criterion of error probability fE(e). Recently 

in [4] a new blind criterion by maximizing the 

zero-error probability for constant modulus error 

eCME has introduced as 

0
)(max

=CMEeCMEEW
ef (3)

To obtain fE(․) non-parametrically, we need the 

Parzen estimator[5] using Gaussian kernel as follows

 

∑
=

−≅
M

i
iX xxG

M
xf

1
)(1)( σ (4)

The zero-mean Gaussian Kernel Gσ(․) with 

standard deviation σ is defined as

]
2

exp[
2
1)( 2

2

σπσσ
xxG −

= . Inserting CME into (4) 

and using a block of past output samples 

{ }11,...,, +−−= Mkkkk yyyY , we have 

∑
−

=
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i
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M
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Letting eCME be zero, the probability fe(eCME) 

reduces to 

∑
−

=
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−−=
1

0
2

2

0
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i
ikeCMEE RyG

M
ef

CME
σ (6)

Using a gradient ascent method for the 

maximization of the zero-error probability for CME 

based on the linear TDL structure, the maximum 

zero-error probability for CME (MZEP-CME) 

algorithm
[4] is derived as 

k

eCMEE
CMEMZEPkk

CME
ef

W
WW

∂

∂
+= =

−+
0

1

)(
μ (7)

∑
−

=
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2
21 )(2 M

i
ikCMEMZEPkk RyG

M σσ
μWW

*
,

2
2 )( Nikikik yyR −−− ⋅⋅−⋅ X

(8) 

where μMZEP-CME is the step-size for convergence 

control.   

We assume that L-ary PAM signaling systems are 

employed and the transmitted levels Al takes the 

following discrete values

LlAl −−= 12 ,  Ll ,...,2,1= (9)
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Then the constant modulus R2 becomes 

][/][ 24
2 ll AEAER = (10)

Ⅳ. MZEP-CME Algorithm with Decision 
Feedback

The decision feedback equalizer comprises a 

feed-forward filter with weight vector 
  and a 

feedback filter with weight vector 
  for producing 

corresponding decisions   from input  . The 

feed-forward filter is identical to the TDL which is 

adopted in CMA and MZEP-CME algorithm. The 

feedback filter receives decisions on previously 

detected symbols. The residual ISI from the present 

estimate is to be removed by the feedback filter
[9]. 

The feed-forward filter weights are the elements 

of [ ]TF
Pk

F
k

F
k

F
k

F
k wwww 1,2,1,0, ,...,,, −=W , and feedback filter 

weight vector is [ ]TB
Qk

B
k

B
k

B
k

B
k wwww 1,2,1,0, ,...,,, −=W . The 

symbol   is an output of decision device for the 

equalizer output  . The input vector for the 

feed-forward filter section is defined as 

[ ]TPkkkkPk xxxx 121, ,...,,, +−−−=X  and the previously 

detected symbols for feedback section are in the 

decision vector 

T

Qkkkk ddd ⎥⎦
⎤

⎢⎣
⎡=

∧

−−

∧

−

∧

−− 2211 ,...,,D̂ . Then the 

output can be expressed as 

[ ] [ ] *
1

*
,

ˆ
−+= k
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The filter weights are adjusted recursively in 

order to maximize the zero-error probability 

    according to the gradient ascent 

method. 
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The gradients are evaluated from
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where M ≥P and M ≥Q.

Now decision feedback MZEP-CME algorithm 

(DF-MZEP-CME) can be summarized as  
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Ⅴ. The Mitigation Effect on Excessive 
CME

In a severe channel distortion environment, most 

blind learning algorithms produce frequent large 

error signal and ensuing incorrect decisions. 

Incorrect decisions can cause error propagation in 

decision feedback equalizers. For this reason, in 

most blind applications, large error signal makes 

using decision feedback impossible. In CMA, the 

large CME induced by severe channel distortion can 

reduce weight values enough to minimize the power 

of CME to some acceptable extent. This can yield 

bursts of errors. We can notice the direct impact of 

CME on the weight update equation of CMA in (2).  

In short, severe channel distortions can induce 

large error samples that hinder the application of 

decision feedback approach to CMA. Without any 

measures of reducing the direct influence of CME 

on the weight update equation of CMA, employment 

of decision feedback in CMA is considered not a 
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Fig. 3. Probability density for errors in CH1
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Fig. 1. Amplitude spectrum for the channel models

feasible strategy for residual ISI cancellation. 

In the case of the proposed algorithm in (16) and 

(17), the CME goes through the Gaussian kernel. 

We see that the Gaussian kernel )( 2
2 RyG ik −−σ  

produces an exponential decay with the distance 

between the instant output power and the constant 

modulus R2. For proposed algorithm in severe 

channel conditions, therefore, the excessively large

2
2 Ry ik −−  induced by the channel condition becomes 

a very small value through the Gaussian kernels in 

the feedforward and feedback filter weight updates. 

 So we can remark that the Gaussian kernel

)( 2
2 RyG ik −−σ  plays a role of reducing the impact of 

excessive CME on the update equations for 

feedforward and feedback section weights. This 

inherent immunity to excessive CME from severe 

channel distortions, that is, the immunity to error 

propagation has provided us with the ground for 

employing the decision feedback structure to 

MZEP-CME algorithm.   

Ⅵ. Simulation results and discussion

In this section, the comparative performance of 

the linear MZEP-CME and the proposed 

DF-MZEP-CME algorithms in blind equalization is 

presented for three linear channels, and simulation 

results are discussed. The 4 level (L = 4) random 

signal is transmitted to the channel and the transfer 

functions H(z) for each channel model
[10] are  

 

CH1: 21 26.093.026.0)( −− ++= zzzH (18)

CH2: 21 304.0903.0304.0)( −− ++= zzzH (19)

CH3: 21 407.0815.0407.0)( −− ++= zzzH (20)

The number of weights is N = 11 in the linear TDL 

equalizer structure. The number of feed-forward and 

feedback section weights is F = 7 and B = 4, 

respectively. The channel noise (AWGN) variance is 

0.001. As a measure of equalizer performance, we 

use MSE learning curves and probability densities 

for errors of the difference between the actual 

transmitted symbol and the output for linear 

MZEP-CME and the proposed DF-MZEP-CME. The 

data-block size and the kernel size are M = 20 and 

σ = 6, respectively. The step size for controlling 

convergence conditions is commonly set to 

μMZEP-CME =0.02 for both algorithms.

In the results for CH1 and CH2 of comparatively 

moderate channel conditions as  shown in Fig.2 to 

5, we observe that the performance gain in steady 
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Fig. 5. Probability density for errors in CH2

state MSE is almost the same in CH1 and slight in 

CH2. 

However, DF-MZEP-CME shows increased 

convergence speed in both channels. In probability 

density comparisons for output error shown in Fig. 

3 and 5, the decision feedback approach gives error 

values better concentration to zero in worse channel 

models though not significant enhancement. 

These results give us the motivation to investigate 

performance differences related to CME and 

decision feedback in much worse channel conditions 

than the moderate channel models of CH1 and CH2.  

  The MSE convergence results acquired in the 

worst channel model CH3 according to this 

motivation are shown in Fig. 6 (the step size in this 

channel model CH3 is 0.06 for both algorithms).  

  The learning curve for the linear MZEP-CME 

algorithm stays at almost the same MSE of -6 dB, 

but that of the proposed DF-MZEP-CME algorithm 

goes steeply down to even -14 dB as weight 

adjustment is proceeded. The difference of steady 

state MSE is over 8 dB. As analyzed in the section 

of V and seen in Fig. 6, we can notice the 

mitigation effect conspicuously on excessive CME 

from the severe channel model. We can conclude 

that the Gaussian kernel )( 2
2 RyG ik −−σ  plays an 

important role of cutting out large CMEs in severe 

ISI channel conditions so that the employment of 

decision feedback approach can yield significant 

performance enhancement. 

Ⅶ. Conclusion

In this paper, in order to cope with severe 

channel distortions in blind equalization systems, a 

decision feedback algorithm based on zero-error 

probability for constant modulus error has been 

presented. The proposed algorithm employing 

decision feedback and Gaussian kernel to deal with 

constant modulus errors has shown superior 

performance particularly in severe channel models.  

  From the observations of the steady state MSE 

and error distribution and the analysis of the 
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proposed algorithm, we have come to the conclusion 

that the proposed blind equalizer algorithm with 

decision feedback can be appropriate for the 

compensation of severe channel distortions. 

The inherent characteristics of the proposed 

algorithm are that the Gaussian kernel of the 

proposed decision feedback algorithm plays a role of 

mitigating the impact of large constant modulus 

errors on system weight adjustment, so that the 

employed decision feedback structure which is 

vulnerable to error propagation can carry out the 

residual ISI cancellation effectively.  
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