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Distance Measure for Biased Probability Density Functions and
Related Equalizer Algorithms for Non-Gaussian Noise
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ABSTRACT

In this paper, a new distance measure for biased PDFs is proposed and a related equalizer algorithm is also
derived for supervised adaptive equalization for multipath channels with impulsive and time- varying DC bias
noise. From the simulation results in the non-Gaussian noise environments, the proposed algorithm has proven
not only robust to impulsive noise but also to have the capability of cancelling time-varying DC bias noise
effectively.

I. Introduction large constant™®

A constant DC bias noise can be removed by
Non-Gaussian noise such as impulsive noise simple analogue or digital filters, but when the
and direct current noise (DC bias noise) are often bias noise changes with time, specific adaptive
present in many types of communication environ- techniques are required to cancel the noise. When
ments such as power line communication systems, zero-mean noise and DC bias noise are mixed,

digital subscriber line systems, mobile radio sys- the DC bias noise makes the probability dis-

[1-4]

tems and also satellite communication links . In tribution of the zero mean noise shifted by the

the case of optical fiber transmission where DC
bias noise is commonly present, the signal recov-
ery is done by the received optical power whose

current is proportional to the desired signal plus a

amount of the DC bias.

Recently, probability density functions (PDFs)
are utilized extensively in the information theoret-
ic learning methods (ITL)m. The ITL methods es-
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tablished based on the well known Parzen’s win-
dowing method (Kernel density estimation)™ have
not dealt with biased distributions. As one of the
ITL measures, the Euclidian distance between two
PDFs has been one of the main approaches in
ITL”. Based on the Euclidian distance measure,
the PDF matching algorithm using the PDF of
desired symbols and the PDF of equalizer output
has recently been introduced and proved to have
superior performance for adaptive equalization ap-
plications[w]. Minimization of the cost function of
the algorithm forces the shape of output PDF to
follow the shape of the desired PDF. In
non-Gaussian noise environments yielding dis-
located output PDFs, algorithms based on the
simple PDF distance measure cannot cope with
the non-Gaussian noise problems.

In this paper, aiming at exploiting the useful-
ness of the bias of samples in distributions, we
propose a new distance measure between biased
PDFs. And then, by minimizing the proposed dis-
tance, we introduce some algorithms for adaptive
equalization in non-Gaussian noise environments.

This paper is organized as follows. In Section
II, we introduce the definition of biased PDF
distance and propose a new cost function. In
Section III, a bias control method is described.
Section IV  reports simulation results and
discussions.  Finally, concluding remarks are
presented in Section V.

II. Biased PDF Distance and Proposed
Cost Function

Defining the desired PDF of an adaptive system
as  /p(@  and the output PDF biased by the

amount of T on the «a axis as

Jy(@+7)  we propose the biased PDF distance
(BPD) as

BPD = [(f,(@) - fy(a+7) der )

Given M training

D, ={d,.d,...d,} | the PDF based on Parzen

symbols

window method [7] can be approximated by

(=236 (-
Fo@) =11 2.6, (e ~d)) 2

With a block of N output samples
Yy ={n. 7>y}, the PDF forced to be shift-

ed by 7 can be expressed as

: 13 _
fD((Z+T):N;GJ((Z+T y[) (3)

where Go,() is typically a zero-mean Guassian
kernel with standard deviation © Since the
integrals of the multiplication of two PDFs comes

from (1) can be rewritten as

[ Ferda—Y">6, d,~d)

i j (4)
> _i N N B
ffy(a+r)da—N2 :ZI/;G a0 -0) )
1 N M
et 036 @vn

Discarding (4) which is not a function of
weight, we obtain the cost function to be mini-

mized as

1 N M
Cost= v ;;[Go 50, =3)=2G 5 (d,~(y,-)] 7

where Y is a function &0 of weight

W' and input X as v =g(W'.X)

where the system  &(W'.X)) could be any type

of filter structures.

. Bias Control based on System
Expansion and the Proposed Cost
Function

Employing the tapped delay line (TDL) struc-
tuare with L taps, the output of the adaptive

system »,=g(W'X)) at the symbol time
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k  becomes ¥ =W'X, in which the system

weight is w :[WO’WI"“5WL—1]T and

_ T .
Xy =% XoYa] s the system input.

By expanding the size of W and Xi ,we
can introduce an expanded system that consists of

an expanded weight vector

W=[w,w,w,,..w,]'  and an expanded input

3 T
vector Xe =[x, Xy oo X b ] with a

constant b as

=W Xi ®)

Then the output of the expanded system becomes

3
Yi=Y,—7 and the bias term T can be ex-

pressed as

3T 3

3
7=y, -y, =W'X,-W X, =—w,-b ©)

This indicates that the bias T can be con-

trolled by the added weight element W

The modified cost function from (7) for the ex-

panded system is

N M

ZZ Ufcy y,) 2G ,(d, y,)] (10)

IN'T“3

Cos(\?\’) =

For minimization of the cost function with respect

3 3 3
to W , the gradient 9Cost(W)/dW s cal-

culated from

3 3 3 3
aCosz(\?V)zL i fz [aGaﬁ(y,-—yi)a(y,—yi)

oW MN i jmieatn o ; — ; ) p) \?V
J i

aG(,f(d y)a(d y)
ad, y) W

]

G 5, y)
—ZT(GI y)( X)] (11)
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Using the steepest descent method to update the

augmented system weights for the maximization

3
of  Cost(W) the expanded system weight vec-

3
tor with the time index ko, W, can be

updated as

k k

E| 3 1
Wk+]=Wk+IUm z z

i=k—N+1 j=k—M+1

(,[(Y, yl

[

5, y,)
( —y,)(XJ X) T

d; —)3’,);(:] (12)

For convenience’s sake, this proposed algorithm
(12) for supervised systems will be referred to in
this paper as BPD algorithm (BPDA). In (12),

3
the output Yy =¥, —7 contains the bias term

7 and the distance between the desired sym-
bol and its output is minimized as the weight is
updated according to algorithm (12). This implies
both ISI and bias noise can be cancelled

simultaneously.

IV. Simulation Results in Non-Gaussian
Noise Environments and Discussion

The non-Gaussian noise model in this paper is
composed of the background Gaussian noise, the
impulse noise and additional DC bias noise. The
background noise is additive white Gaussian noise
(AWGN) of which variance is Oov . The im-
pulse noise occurs according to a Poisson process
and the average number of impulses per in-
formation symbol duration is defined as &€

The amplitude distribution of impulse noise has a

Gaussian with variance Ol . Then the PDF

expression of the impulsive noise My,

(background Gaussian noise + impulse noise) is

Im _nlm2
Sun,) = eXp [ﬁ] 272-(0-2 +O'2 P (0-421\/ +0-12N)]

as in [10] and [11]. With DC bias noise added to
the channel, the total noise at time k can be ex-
pressed as % TMpck TP in which  ocs
is time-varying DC bias noise.

In this section the performance of the PDF
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matching algorithm (PMA) in [10] and the pro-
posed BPDA is experimented for fading channels
contaminated with DC bias and impulsive noise.
The performance is investigated in 4 PAM with

d, ={13, 1} and all values are
equi-probable. For fair comparison of performance,
the channel model and impulsive noise are the

same ones used in [10], except that the
non-Gaussian noise %« for this simulation is
composed of the impulsive noise "ms  and DC
bias noise ’ock . The DC bias noise is gen-

erated as oci =—Sn2ALk) &  f,=0.0005

volt
L
;=

T T T T T
0 2000 4000 6000 8000 10000 12000
Number of samples

Fig. 1. Impulsive noise with time-varying DC bias.

The noise parameters are chosen to be ob-
servable as depicted in Fig.1. For the assessment
of the potential usefulness of the proposed algo-
rithm, the DC bias noise is added from the mean
time at 5000 symbol time after all algorithms
have converged.

In fig. 2 and 3, MSE performance and error
distribution are shown, respectively. The error dis-

tribution reveals how frequently the error occurs,

3
where the error is defined as ¢ =d,—y,
The equalizer structure is a tapped delay line with

11 weights and the output signal is

7 =W'X,  but the output of the proposed

3 3T 3

BPDA is y.=W Xt . The constant » in

3
the expanded input vector X, is set to 2

Data-block size M=N=4 . The kernel size

o and step-size for the algorithms are com-

monly 1.0 0.01 , respectively. All these
parameters are selected in the case that the algo-
rithms have the lowest steady state MSE values.
In Fig. 1, we can observe time varying DC bias
that starts to be added from 5000 samples and many
impulse spikes that frequently occur (some impulses
reach over 20 volts). Both algorithms show the same
convergence speed proving highly immune to im-
pulsive noise. Though the PMA has the merits of ro-
bustness to impulsive noise, MSE of the PMA be-
gins to increase after the time-varying DC bias is
added. On the other hand, the proposed BPDA stays

MSE (dB)

T T T T T 1
0 2000 4000 6000 8000 10000 12000
Number of symbols (iterations)

Fig. 2. MSE performance for the channel model with
impulsive noise and time-varying DC bias.

Probability density

r r T
-0.4 -0.2 0.0 0.2 0.4
System error

Fig. 3. Error distribution comparison in the environments
with impulsive noise and time-varying DC bias.

showing the same steady state MSE.

The performance against time-varying DC bias
and impulsive noise can be observed more appa-
rently in the error distribution comparison shown in
Fig. 3. The error samples of BPDA form a con-
centrated  distribution centered around  zero.
However, the ones of PMA moved to right side as
the time-varying DC bias noise is added. This in-
dicates that the conventional PMA cannot compen-
sate the bias completely yielding biased error sam-

ples centered at around 0.4.
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V. Conclusions

In this paper, the biased PDF distance measure
undisturbed by the time-varying DC bias noise
between two different PDFs has been proposed
and a related algorithm has been derived for su-
pervised adaptive equalization. The performance
of the proposed algorithm was investigated in the
environment of multipath channels with impulsive
and time- varying DC bias noise.

From the simulation results, the proposed and
the conventional algorithm used for performance
comparison has shown to eliminate outliers com-
ing from impulsive noise, but the conventional al-
gorithm does not have the capability of compen-
sating DC bias efficiently.

On the other hand, the proposed algorithm has
proven not only to be robust to impulsive noise
but also to have the -capability of cancelling
time-varying DC bias noise. So we can conclude
that the proposed distance measure and related al-
gorithms can be effectively used in adaptive sys-
tems placed in inferior environments contaminated
with non-Gaussian noise such as impulsive and/or

time-varying DC bias noise.
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